結果

問題 No.1086 桁和の桁和2
ユーザー kriiikriii
提出日時 2020-06-19 22:20:50
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 1,990 bytes
コンパイル時間 928 ms
コンパイル使用メモリ 45,568 KB
最終ジャッジ日時 2025-01-11 06:52:44
ジャッジサーバーID
(参考情報)
judge3 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4 WA * 1
other AC * 9 WA * 2 TLE * 20
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:56:15: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   56 |         scanf ("%d", &N);
      |         ~~~~~~^~~~~~~~~~
main.cpp:57:43: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   57 |         for (int i = 0; i < N; i++) scanf ("%lld", &L[i]);
      |                                     ~~~~~~^~~~~~~~~~~~~~~
main.cpp:58:43: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   58 |         for (int i = 0; i < N; i++) scanf ("%lld", &R[i]);
      |                                     ~~~~~~^~~~~~~~~~~~~~~
main.cpp:59:43: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   59 |         for (int i = 0; i < N; i++) scanf ("%d", &D[i]);
      |                                     ~~~~~~^~~~~~~~~~~~~

ソースコード

diff #

#include <stdio.h>
#include <algorithm>
using namespace std;

int N, D[100100];
long long L[100100], R[100100];

const long long mod = 1000000007;
struct matrix{
	matrix(){
		for (int i = 0; i < 9; i++) for (int j = 0; j < 9; j++) a[i][j] = 0;
	}
	long long a[9][9];

	matrix operator +(matrix t){
		matrix r;
		for (int i = 0; i < 9; i++) for (int j = 0; j < 9; j++){
			r.a[i][j] = (a[i][j] + t.a[i][j]) % mod;
		}
		return r;
	}
	matrix operator *(matrix t){
		matrix r;
		for (int i = 0; i < 9; i++) for (int j = 0; j < 9; j++){
			r.a[i][j] = 0;
			for (int k = 0; k < 9; k++){
				r.a[i][j] = (r.a[i][j] + a[i][k] * t.a[k][j]) % mod;
			}
		}
		return r;
	}
}iden, all, base;

pair<matrix, matrix> fpow(matrix a, long long n)
{
	if (n == 0) return { iden, matrix() };
	if (n == 1) return { a, iden };

	auto half = fpow(a * a, n / 2);
	half.second = half.second * (iden + a);
	if (n % 2){
		half.second = half.second + half.first;
		half.first = half.first * a;
	}
	return half;
}

int main()
{
	for (int i = 0; i < 9; i++){
		iden.a[i][i] = 1;
		for (int j = 0; j < 9; j++) all.a[i][j] = 1;
	}
	for (int i = 0; i < 9; i++) for (int j = 0; j < 10; j++) base.a[i][(i + j) % 9]++;

	scanf ("%d", &N);
	for (int i = 0; i < N; i++) scanf ("%lld", &L[i]);
	for (int i = 0; i < N; i++) scanf ("%lld", &R[i]);
	for (int i = 0; i < N; i++) scanf ("%d", &D[i]);

	int s = 0;
	while (s < N && D[s] == 0) s++;

	for (int i = s; i < N; i++) if (D[i] == 0){
		puts("0");
		return 0;
	}

	for (int i = s; i < N; i++){
		L[i - s] = L[i];
		R[i - s] = R[i];
		D[i - s] = D[i];
	}
	N -= s;

	long long ans = 1; int ld = 0;
	for (int i = 0; i < N; i++){
		int nd = (D[i] + 9 - ld) % 9;

		auto low = fpow(base, L[i]);
		auto upp = fpow(base, R[i] - L[i]);

		matrix p = all * low.first * upp.second;
		ans = ans * (p.a[0][nd] + (nd == 0)) % mod;
		ld = nd;
	}

	bool g = 1;
	for (int i = 0; i < N; i++) if (D[i] != 9) g = 0;
	if (g) ans = (ans + mod - 1) % mod;
	
	printf ("%lld\n", ans);

	return 0;
}
0