結果
問題 | No.1086 桁和の桁和2 |
ユーザー | LayCurse |
提出日時 | 2020-06-19 22:22:04 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 11,895 bytes |
コンパイル時間 | 2,589 ms |
コンパイル使用メモリ | 222,656 KB |
実行使用メモリ | 11,084 KB |
最終ジャッジ日時 | 2024-07-03 14:59:38 |
合計ジャッジ時間 | 29,695 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 3 ms
6,944 KB |
testcase_04 | WA | - |
testcase_05 | AC | 1,317 ms
8,520 KB |
testcase_06 | AC | 3 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | AC | 826 ms
7,880 KB |
testcase_11 | AC | 226 ms
6,940 KB |
testcase_12 | AC | 46 ms
6,940 KB |
testcase_13 | AC | 1,086 ms
8,136 KB |
testcase_14 | AC | 669 ms
10,824 KB |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | AC | 1,353 ms
8,256 KB |
ソースコード
#pragma GCC optimize ("Ofast") #include<bits/stdc++.h> using namespace std; #define MD (1000000007U) void *wmem; char memarr[96000000]; template<class S, class T> inline S min_L(S a,T b){ return a<=b?a:b; } struct Modint{ unsigned val; Modint(){ val=0; } Modint(int a){ val = ord(a); } Modint(unsigned a){ val = ord(a); } Modint(long long a){ val = ord(a); } Modint(unsigned long long a){ val = ord(a); } inline unsigned ord(unsigned a){ return a%MD; } inline unsigned ord(int a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned ord(unsigned long long a){ return a%MD; } inline unsigned ord(long long a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned get(){ return val; } inline Modint &operator+=(Modint a){ val += a.val; if(val >= MD){ val -= MD; } return *this; } inline Modint &operator-=(Modint a){ if(val < a.val){ val = val + MD - a.val; } else{ val -= a.val; } return *this; } inline Modint &operator*=(Modint a){ val = ((unsigned long long)val*a.val)%MD; return *this; } inline Modint &operator/=(Modint a){ return *this *= a.inverse(); } inline Modint operator+(Modint a){ return Modint(*this)+=a; } inline Modint operator-(Modint a){ return Modint(*this)-=a; } inline Modint operator*(Modint a){ return Modint(*this)*=a; } inline Modint operator/(Modint a){ return Modint(*this)/=a; } inline Modint operator+(int a){ return Modint(*this)+=Modint(a); } inline Modint operator-(int a){ return Modint(*this)-=Modint(a); } inline Modint operator*(int a){ return Modint(*this)*=Modint(a); } inline Modint operator/(int a){ return Modint(*this)/=Modint(a); } inline Modint operator+(long long a){ return Modint(*this)+=Modint(a); } inline Modint operator-(long long a){ return Modint(*this)-=Modint(a); } inline Modint operator*(long long a){ return Modint(*this)*=Modint(a); } inline Modint operator/(long long a){ return Modint(*this)/=Modint(a); } inline Modint operator-(void){ Modint res; if(val){ res.val=MD-val; } else{ res.val=0; } return res; } inline operator bool(void){ return val!=0; } inline operator int(void){ return get(); } inline operator long long(void){ return get(); } inline Modint inverse(){ int a = val; int b = MD; int u = 1; int v = 0; int t; Modint res; while(b){ t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } if(u < 0){ u += MD; } res.val = u; return res; } inline Modint pw(unsigned long long b){ Modint a(*this); Modint res; res.val = 1; while(b){ if(b&1){ res *= a; } b >>= 1; a *= a; } return res; } inline bool operator==(int a){ return ord(a)==val; } inline bool operator!=(int a){ return ord(a)!=val; } } ; inline Modint operator+(int a, Modint b){ return Modint(a)+=b; } inline Modint operator-(int a, Modint b){ return Modint(a)-=b; } inline Modint operator*(int a, Modint b){ return Modint(a)*=b; } inline Modint operator/(int a, Modint b){ return Modint(a)/=b; } inline Modint operator+(long long a, Modint b){ return Modint(a)+=b; } inline Modint operator-(long long a, Modint b){ return Modint(a)-=b; } inline Modint operator*(long long a, Modint b){ return Modint(a)*=b; } inline Modint operator/(long long a, Modint b){ return Modint(a)/=b; } inline int my_getchar_unlocked(){ static char buf[1048576]; static int s = 1048576; static int e = 1048576; if(s == e && e == 1048576){ e = fread_unlocked(buf, 1, 1048576, stdin); s = 0; } if(s == e){ return EOF; } return buf[s++]; } inline void rd(int &x){ int k; int m=0; x=0; for(;;){ k = my_getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = my_getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } inline void rd(long long &x){ int k; int m=0; x=0; for(;;){ k = my_getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = my_getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } struct MY_WRITER{ char buf[1048576]; int s; int e; MY_WRITER(){ s = 0; e = 1048576; } ~MY_WRITER(){ if(s){ fwrite_unlocked(buf, 1, s, stdout); } } } ; MY_WRITER MY_WRITER_VAR; void my_putchar_unlocked(int a){ if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){ fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout); MY_WRITER_VAR.s = 0; } MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a; } inline void wt_L(char a){ my_putchar_unlocked(a); } inline void wt_L(int x){ int s=0; int m=0; char f[10]; if(x<0){ m=1; x=-x; } while(x){ f[s++]=x%10; x/=10; } if(!s){ f[s++]=0; } if(m){ my_putchar_unlocked('-'); } while(s--){ my_putchar_unlocked(f[s]+'0'); } } inline void wt_L(Modint x){ int i; i = (int)x; wt_L(i); } template<class T> struct Matrix{ int r; int c; int mem; T *dat; Matrix(){ r=c=mem = 0; } Matrix(const int rr, const int cc){ if(rr == 0 || cc == 0){ r = c = 0; } else{ r = rr; c = cc; } mem = r * c; if(mem > 0){ dat = new T[mem]; } } Matrix(const Matrix<T> &a){ int i; r = a.r; c = a.c; mem = r * c; dat = new T[mem]; for(i=(0);i<(mem);i++){ dat[i] = a.dat[i]; } } ~Matrix(){ if(mem){ delete [] dat; } } void changeSize(const int rr, const int cc){ if(rr==0 || cc==0){ r = c = 0; } else{ r = rr; c = cc; } if(mem < r*c){ if(mem){ delete [] dat; } mem = r*c; dat = new T[mem]; } } Matrix<T>& operator=(const Matrix<T> &a){ int i; int j; r = a.r; c = a.c; j = r * c; changeSize(r,c); for(i=(0);i<(j);i++){ dat[i] = a.dat[i]; } return *this; } Matrix<T>& operator=(const int a){ int i; int j; j = r * c; for(i=(0);i<(j);i++){ dat[i] = 0; } j =min_L(r, c); for(i=(0);i<(j);i++){ dat[i*c+i] = a; } return *this; } Matrix<T>& operator+=(const Matrix<T> &a){ int i; int j; if(r==0 || r!=a.r || c!=a.c){ changeSize(0,0); return *this; } j = r*c; for(i=(0);i<(j);i++){ dat[i] += a.dat[i]; } return *this; } Matrix<T> operator+(const Matrix<T> &a){ return Matrix<T>(*this) += a; } Matrix<T>& operator-=(const Matrix<T> &a){ int i; int j; if(r==0 || r!=a.r || c!=a.c){ changeSize(0,0); return *this; } j = r*c; for(i=(0);i<(j);i++){ dat[i] -= a.dat[i]; } return *this; } Matrix<T> operator-(const Matrix<T> &a){ return Matrix<T>(*this) -= a; } Matrix<T>& operator*=(const Matrix<T> &a){ int i; int j; int k; int x; T *m; if(r==0 || c!=a.r){ changeSize(0,0); return *this; } m = (T*)wmem; x = r * a.c; for(i=(0);i<(x);i++){ m[i] = 0; } for(i=(0);i<(r);i++){ for(k=(0);k<(c);k++){ for(j=(0);j<(a.c);j++){ m[i*a.c+j] += dat[i*c+k] * a.dat[k*a.c+j]; } } } changeSize(r, a.c); for(i=(0);i<(x);i++){ dat[i] = m[i]; } return *this; } Matrix<T> operator*(const Matrix<T> &a){ return Matrix<T>(*this) *= a; } Matrix<T>& operator*=(const int a){ int i; int j; j = r * c; for(i=(0);i<(j);i++){ dat[i] *= a; } return *this; } Matrix<T>& operator*=(const long long a){ int i; int j; j = r * c; for(i=(0);i<(j);i++){ dat[i] *= a; } return *this; } Matrix<T>& operator*=(const double a){ int i; int j; j = r * c; for(i=(0);i<(j);i++){ dat[i] *= a; } return *this; } inline T* operator[](const int a){ return dat+a*c; } } ; template<class T> Matrix<T> operator*(const int a, const Matrix<T> &b){ return Matrix<T>(b)*=a; } template<class T> Matrix<T> operator*(const Matrix<T> &b, const int a){ return Matrix<T>(b)*=a; } template<class T> Matrix<T> operator*(const long long a, const Matrix<T> &b){ return Matrix<T>(b)*=a; } template<class T> Matrix<T> operator*(const Matrix<T> &b, const long long a){ return Matrix<T>(b)*=a; } template<class T> Matrix<T> operator*(const double a, const Matrix<T> &b){ return Matrix<T>(b)*=a; } template<class T> Matrix<T> operator*(const Matrix<T> &b, const double a){ return Matrix<T>(b)*=a; } template<class T, class S> inline Matrix<T> pow_L(Matrix<T> a, S b){ int i; int j; Matrix<T> res; res.changeSize(a.r, a.c); res = 1; while(b){ if(b&1){ res *= a; } b >>= 1; a *= a; } return res; } template<class S, class T> inline S moddw_L(S a, const T b){ a %= b; if(a < 0){ a += b; } return a; } int N; int D[100000]; long long L[100000]; long long R[100000]; Matrix<Modint> mt(9,9); Matrix<Modint> pm[64]; Matrix<Modint> pw(1,9); Modint solve(long long r, int d){ int i; if(d==0){ return 1; } pw[0][0] = 1; for(i=(1);i<(9);i++){ pw[0][i] = 0; } for(i=(0);i<(63);i++){ if(r&1LL<<i){ pw = pw * pm[i]; } } if(d==9){ return pw[0][0] - 1; } return pw[0][d]; } int main(){ int i; wmem = memarr; int d; Modint res = 1; Modint tmp; rd(N); { int cTE1_r3A; for(cTE1_r3A=(0);cTE1_r3A<(N);cTE1_r3A++){ rd(L[cTE1_r3A]); } } { int xr20shxY; for(xr20shxY=(0);xr20shxY<(N);xr20shxY++){ rd(R[xr20shxY]); } } { int KrdatlYV; for(KrdatlYV=(0);KrdatlYV<(N);KrdatlYV++){ rd(D[KrdatlYV]); } } for(i=(0);i<(9);i++){ int j; for(j=(0);j<(9);j++){ mt[i][j] = 0; } } for(i=(0);i<(9);i++){ int j; for(j=(0);j<(10);j++){ mt[i][(i+j)%9] += 1; } } for(i=(0);i<(64);i++){ pm[i].changeSize(9,9); } pm[0] = 1; pm[1] = mt; for(i=(2);i<(64);i++){ pm[i] = pm[i-1] * pm[i-1]; } for(i=(0);i<(N);i++){ tmp = 0; if(i==0 && D[i]==0){ tmp += res; } if(i!=0 && D[i]==D[i-1]){ tmp += res; } if(D[i]){ if(i){ d =(moddw_L((D[i] -D[i-1]),9)); } else{ d =(moddw_L((D[i] -0),9)); } if(d==0){ d = 9; } tmp += res * (solve(R[i], d) - solve(L[i], d)); } res = tmp; } wt_L(res); wt_L('\n'); return 0; } // cLay varsion 20200509-1 // --- original code --- // int N, D[1d5]; // ll L[1d5], R[1d5]; // Matrix<Modint> mt(9,9), pm[64], pw(1,9); // // Modint solve(ll r, int d){ // if(d==0) return 1; // // pw[0][0] = 1; // rep(i,1,9) pw[0][i] = 0; // // rep(i,63) if(r&1LL<<i) pw = pw * pm[i]; // // if(d==9) return pw[0][0] - 1; // return pw[0][d]; // } // // { // int d; // Modint res = 1, tmp; // rd(N,L(N),R(N),D(N)); // // // rep(i,9) rep(j,9) mt[i][j] = 0; // rep(i,9) rep(j,10) mt[i][(i+j)%9] += 1; // // rep(i,64) pm[i].changeSize(9,9); // pm[0] = 1; // pm[1] = mt; // rep(i,2,64) pm[i] = pm[i-1] * pm[i-1]; // // rep(i,N){ // tmp = 0; // if(i==0 && D[i]==0) tmp += res; // if(i!=0 && D[i]==D[i-1]) tmp += res; // if(D[i]){ // d = (D[i] - if[i, D[i-1], 0]) %% 9; // if(d==0) d = 9; // tmp += res * (solve(R[i], d) - solve(L[i], d)); // } // res = tmp; // } // wt(res); // }