結果
問題 | No.1086 桁和の桁和2 |
ユーザー | rniya |
提出日時 | 2020-06-19 23:18:54 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 13,639 bytes |
コンパイル時間 | 2,088 ms |
コンパイル使用メモリ | 187,388 KB |
実行使用メモリ | 16,884 KB |
最終ジャッジ日時 | 2024-07-03 15:42:12 |
合計ジャッジ時間 | 10,591 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,752 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 40 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | WA | - |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 24 ms
5,376 KB |
testcase_11 | AC | 7 ms
5,376 KB |
testcase_12 | AC | 3 ms
5,376 KB |
testcase_13 | AC | 31 ms
5,376 KB |
testcase_14 | AC | 20 ms
5,376 KB |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
ソースコード
#pragma region Macros #include <bits/stdc++.h> using namespace std; typedef long long ll; #define FOR(i,a,b) for (int i=(a);i<(b);++i) #define REP(i,n) FOR(i,0,n) #define ALL(x) (x).begin(),(x).end() const long long MOD=1e9+7; // const long long MOD=998244353; const int INF=1e9; const long long IINF=1e18; const int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1}; const char dir[4]={'D','R','U','L'}; #define LOCAL template<typename T> istream &operator>>(istream &is,vector<T> &v){ for (T &x:v) is >> x; return is; } template<typename T> ostream &operator<<(ostream &os,const vector<T> &v){ for (int i=0;i<v.size();++i){ os << v[i] << (i+1==v.size()?"": " "); } return os; } template<typename T,typename U> ostream &operator<<(ostream &os,const pair<T,U> &p){ cout << '(' << p.first << ',' << p.second << ')'; return os; } template<typename T,typename U> ostream &operator<<(ostream &os,const map<T,U> &m){ os << '{'; for (auto itr=m.begin();itr!=m.end();++itr){ os << '(' << itr->first << ',' << itr->second << ')'; if (++itr!=m.end()) os << ','; --itr; } os << '}'; return os; } template<typename T> ostream &operator<<(ostream &os,const set<T> &s){ os << '{'; for (auto itr=s.begin();itr!=s.end();++itr){ os << *itr; if (++itr!=s.end()) os << ','; --itr; } os << '}'; return os; } void debug_out(){cerr << '\n';} template<class Head,class... Tail> void debug_out(Head&& head,Tail&&... tail){ cerr << head; if (sizeof...(Tail)>0) cerr << ", "; debug_out(move(tail)...); } #ifdef LOCAL #define debug(...) cerr << " ";\ cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n';\ cerr << " ";\ debug_out(__VA_ARGS__) #else #define debug(...) 42 #endif template<typename T> T gcd(T x,T y){return y!=0?gcd(y,x%y):x;} template<typename T> T lcm(T x,T y){return x/gcd(x,y)*y;} template<class T1,class T2> inline bool chmin(T1 &a,T2 b){ if (a>b){a=b; return true;} return false; } template<class T1,class T2> inline bool chmax(T1 &a,T2 b){ if (a<b){a=b; return true;} return false; } #pragma endregion template<uint_fast64_t Modulus> class modint{ using u64=uint_fast64_t; public: u64 a; constexpr modint(const u64 x=0) noexcept:a(((x%Modulus)+Modulus)%Modulus){} constexpr u64 &value() noexcept{return a;} constexpr const u64 &value() const noexcept{return a;} constexpr modint &operator+=(const modint &rhs) noexcept{ a+=rhs.a; if (a>=Modulus) a-=Modulus; return *this; } constexpr modint operator+(const modint &rhs) const noexcept{ return modint(*this)+=rhs; } constexpr modint &operator++() noexcept{ return ++a,*this; } constexpr modint operator++(int) noexcept{ modint t=*this; return ++a,t; } constexpr modint &operator-=(const modint &rhs) noexcept{ if (a<rhs.a) a+=Modulus; a-=rhs.a; return *this; } constexpr modint operator-(const modint &rhs) const noexcept{ return modint(*this)-=rhs; } constexpr modint &operator--() noexcept{ return --a,*this; } constexpr modint operator--(int) noexcept{ modint t=*this; return --a,t; } constexpr modint &operator*=(const modint &rhs) noexcept{ a=a*rhs.a%Modulus; return *this; } constexpr modint operator*(const modint &rhs) const noexcept{ return modint(*this)*=rhs; } constexpr modint &operator/=(modint rhs) noexcept{ u64 exp=Modulus-2; while(exp){ if (exp&1) *this*=rhs; rhs*=rhs; exp>>=1; } return *this; } constexpr modint operator/(const modint &rhs) const noexcept{ return modint(*this)/=rhs; } constexpr modint operator-() const noexcept{ return modint(Modulus-a); } constexpr bool operator==(const modint &rhs) const noexcept{ return a==rhs.a; } constexpr bool operator!=(const modint &rhs) const noexcept{ return a!=rhs.a; } constexpr bool operator!() const noexcept{return !a;} friend constexpr modint pow(modint rhs,long long exp) noexcept{ modint res{1}; while(exp){ if (exp&1) res*=rhs; rhs*=rhs; exp>>=1; } return res; } template<class T> friend constexpr modint operator+(T x,modint y) noexcept{ return modint(x)+y; } template<class T> friend constexpr modint operator-(T x,modint y) noexcept{ return modint(x)-y; } template<class T> friend constexpr modint operator*(T x,modint y) noexcept{ return modint(x)*y; } template<class T> friend constexpr modint operator/(T x,modint y) noexcept{ return modint(x)/y; } friend ostream &operator<<(ostream &s,const modint &rhs) noexcept{ return s << rhs.a; } friend istream &operator>>(istream &s,modint &rhs) noexcept{ u64 a; rhs=modint{(s >> a,a)}; return s; } }; using mint=modint<MOD>; /* template<class K> struct Matrix{ vector<vector<K>> dat; Matrix(size_t r,size_t c):dat(r,vector<K>(c,K())){} Matrix(size_t n):dat(n,vector<K>(n,K())){} Matrix(vector<vector<K>> dat):dat(dat){} size_t size() const{return dat.size();} vector<K> &operator[](int i){return dat[i];} const vector<K> &operator[](int i) const{return dat[i];} static Matrix I(size_t n){ Matrix res(n); for (int i=0;i<n;++i) res[i][i]=K(1); return res; } Matrix &operator+=(const Matrix &B){ for (int i=0;i<dat.size();++i) for (int j=0;j<dat[0].size();++j) (*this)[i][j]+=B[i][j]; return (*this); } Matrix operator+(const Matrix &B) const{ return Matrix(*this)+=B; } Matrix &operator-=(const Matrix &B){ for (int i=0;i<dat.size();++i) for (int j=0;j<dat[0].size();++j) (*this)[i][j]-=B[i][j]; return (*this); } Matrix operator-(const Matrix &B) const{ return Matrix(*this)-=B; } Matrix &operator*=(const Matrix &B){ vector<vector<K>> res(dat.size(),vector<K>(B[0].size(),K())); for (int i=0;i<dat.size();++i) for (int j=0;j<B[0].size();++j) for (int k=0;k<B.size();++k) res[i][j]+=(*this)[i][k]*B[k][j]; dat.swap(res); return (*this); } Matrix operator*(const Matrix &B) const{ return Matrix(*this)*=B; } Matrix &operator^=(long long k){ Matrix res=Matrix::I(size()); while(k>0){ if (k&1LL) res*=*this; *this*=*this; k>>=1LL; } dat.swap(res.dat); return (*this); } Matrix operator^(long long k) const{ return Matrix(*this)^=k; } static Matrix Gauss_Jordan(const Matrix &A,const Matrix &B){ int n=A.size(),l=B[0].size(); Matrix C(n,n+l); for (int i=0;i<n;++i){ for (int j=0;j<n;++j) C[i][j]=A[i][j]; for (int j=0;j<l;++j) C[i][j+n]=B[i][j]; } for (int i=0;i<n;++i){ int p=i; for (int j=i;j<n;++j){ if (abs(C[p][i])<abs(C[j][i])) p=j; } swap(C[i],C[p]); if (abs(C[i][i])<1e-9) return Matrix(0,0); for (int j=i+1;j<n+l;++j) C[i][j]/=C[i][i]; for (int j=0;j<n;++j){ if (i!=j) for (int k=i+1;k<n+l;++k){ C[j][k]-=C[j][i]*C[i][k]; } } } Matrix res(n,l); for (int i=0;i<n;++i) for (int j=0;j<n;++j) res[i][j]=C[i][j+n]; return res; } Matrix inv() const{ Matrix res=I(size()); return Gauss_Jordan(*this,res); } K determinant() const{ Matrix A(dat); K res(1); int n=size(); for (int i=0;i<n;++i){ int p=i; for (int j=i;j<n;++j){ if (abs(A[p][i])<abs(A[j][i])) p=j; } if (i!=p) swap(A[i],A[p]),res=-res; if (abs(A[i][i])<1e-9) return K(0); res*=A[i][i]; for (int j=i+1;j<n;++j) A[i][j]/=A[i][i]; for (int j=i+1;j<n;++j) for (int k=i+1;k<n;++k) A[j][k]-=A[j][i]*A[i][k]; } return res; } //sum_{k=0}^{n-1} x^k static K geometric_sum(K x,long long n){ Matrix A(2); A[0][0]=x; A[0][1]=0; A[1][0]=1; A[1][1]=1; return (A^n)[1][0]; } //sum_{k=0}^{n-1} A^k Matrix powsum(long long k) const{ int n=size(); Matrix B(n<<1),res(n); for (int i=0;i<n;++i){ for (int j=0;j<n;++j) B[i][j]=dat[i][j]; B[i+n][i]=B[i+n][i+n]=K(1); } B^=k; for (int i=0;i<n;++i) for (int j=0;j<n;++j) res[i][j]=B[i+n][j]; return res; } }; */ template<typename K> struct Matrix{ typedef vector<K> arr; typedef vector<arr> mat; mat dat; Matrix(size_t r,size_t c):dat(r,arr(c,K())){} Matrix(mat dat):dat(dat){} size_t size() const{return dat.size();} bool empty() const{return size()==0;} arr& operator[](size_t k){return dat[k];} const arr& operator[](size_t k) const {return dat[k];} static Matrix cross(const Matrix &A,const Matrix &B){ Matrix res(A.size(),B[0].size()); for(int i=0;i<(int)A.size();i++) for(int j=0;j<(int)B[0].size();j++) for(int k=0;k<(int)B.size();k++) res[i][j]+=A[i][k]*B[k][j]; return res; } static Matrix identity(size_t n){ Matrix res(n,n); for(int i=0;i<(int)n;i++) res[i][i]=K(1); return res; } Matrix pow(long long n) const{ Matrix a(dat),res=identity(size()); while(n){ if(n&1) res=cross(res,a); a=cross(a,a); n>>=1; } return res; } template<typename T> using ET = enable_if<is_floating_point<T>::value>; template<typename T> using EF = enable_if<!is_floating_point<T>::value>; template<typename T, typename ET<T>::type* = nullptr> static bool is_zero(T x){return abs(x)<1e-8;} template<typename T, typename EF<T>::type* = nullptr> static bool is_zero(T x){return x==T(0);} template<typename T, typename ET<T>::type* = nullptr> static bool compare(T x,T y){return abs(x)<abs(y);} template<typename T, typename EF<T>::type* = nullptr> static bool compare(T x,T y){(void)x;return y!=T(0);} // assume regularity static Matrix gauss_jordan(const Matrix &A,const Matrix &B){ int n=A.size(),l=B[0].size(); Matrix C(n,n+l); for(int i=0;i<n;i++){ for(int j=0;j<n;j++) C[i][j]=A[i][j]; for(int j=0;j<l;j++) C[i][n+j]=B[i][j]; } for(int i=0;i<n;i++){ int p=i; for(int j=i;j<n;j++) if(compare(C[p][i],C[j][i])) p=j; swap(C[i],C[p]); if(is_zero(C[i][i])) return Matrix(0,0); for(int j=i+1;j<n+l;j++) C[i][j]/=C[i][i]; for(int j=0;j<n;j++){ if(i==j) continue; for(int k=i+1;k<n+l;k++) C[j][k]-=C[j][i]*C[i][k]; } } Matrix res(n,l); for(int i=0;i<n;i++) for(int j=0;j<l;j++) res[i][j]=C[i][n+j]; return res; } Matrix inv() const{ Matrix B=identity(size()); return gauss_jordan(*this,B); } static arr linear_equations(const Matrix &A,const arr &b){ Matrix B(b.size(),1); for(int i=0;i<(int)b.size();i++) B[i][0]=b[i]; Matrix tmp=gauss_jordan(A,B); arr res(tmp.size()); for(int i=0;i<(int)tmp.size();i++) res[i]=tmp[i][0]; return res; } K determinant() const{ Matrix A(dat); K res(1); int n=size(); for(int i=0;i<n;i++){ int p=i; for(int j=i;j<n;j++) if(compare(A[p][i],A[j][i])) p=j; if(i!=p) swap(A[i],A[p]),res=-res; if(is_zero(A[i][i])) return K(0); res*=A[i][i]; for(int j=i+1;j<n;j++) A[i][j]/=A[i][i]; for(int j=i+1;j<n;j++) for(int k=i+1;k<n;k++) A[j][k]-=A[j][i]*A[i][k]; } return res; } static K sigma(K x,long long n){ Matrix A(2,2); A[0][0]=x;A[0][1]=0; A[1][0]=1;A[1][1]=1; return A.pow(n)[1][0]; } }; int main(){ cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; vector<ll> L(N),R(N); cin >> L >> R; vector<int> D(N); cin >> D; int s=0; while(s<N&&!D[s]) ++s; if (s==N){cout << 1 << '\n'; return 0;} for (int i=s;i<N;++i) if (!D[i]){ cout << 0 << '\n'; return 0; } for (int i=s;i<N;++i) D[i]%=9; vector<pair<ll,int>> LR; vector<int> x(N); for (int i=s;i<N;++i){ x[i]=(i==s?D[i]:(D[i]-D[i-1]+9)%9); LR.emplace_back(L[i],i); LR.emplace_back(R[i],-(i+1)); } sort(ALL(LR)); vector<mint> l(N,0),r(N,0); ll pre=0; Matrix<mint> SM(9,9),M(9,9); for (int i=0;i<9;++i){ for (int j=0;j<9;++j){ SM[i][j]=(i==j?2:1); M[i][j]=(i==j?1:0); } } for (int i=0;i<LR.size();++i){ if (LR[i].first==0) continue; ll p=LR[i].first-pre; Matrix<mint> MM=SM.pow(p); M=Matrix<mint>::cross(M,MM); int id=LR[i].second,num=(id>=0?id:-id-1); if (id>=0) l[num]=M[0][x[num]]; else r[num]=M[0][x[num]]; pre=LR[i].first; } mint ans=1; for (int i=s;i<N;++i){ int x=(i==s?D[0]:(D[i]-D[i-1]+9)%9); mint sum=r[i]-l[i]; if (!x&&L[i]>0) ++sum; ans*=sum; } cout << ans << '\n'; }