結果
| 問題 |
No.1087 転倒数の転倒数
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-06-20 00:13:46 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 100 ms / 2,000 ms |
| コード長 | 11,737 bytes |
| コンパイル時間 | 2,116 ms |
| コンパイル使用メモリ | 187,088 KB |
| 実行使用メモリ | 7,460 KB |
| 最終ジャッジ日時 | 2024-07-03 16:19:29 |
| 合計ジャッジ時間 | 16,325 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 6 |
| other | AC * 31 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
constexpr lint mod = 1e9 + 7;
#define all(x) (x).begin(), (x).end()
#define bitcount(n) __builtin_popcountl((lint)(n))
#define fcout cout << fixed << setprecision(15)
#define highest(x) (63 - __builtin_clzl(x))
#define rep(i, n) for(int i = 0; i < int(n); i++)
#define rep2(i, l, r) for(int i = int(l); i < int(r); i++)
#define repr(i, n) for(int i = int(n) - 1; i >= 0; i--)
#define repr2(i, l, r) for(int i = int(r) - 1; i >= int(l); i--)
#define SZ(x) int(x.size())
constexpr int inf9 = 1e9; constexpr lint inf18 = 1e18;
inline void YES(bool condition){ if(condition) cout << "YES" << endl; else cout << "NO" << endl; }
inline void Yes(bool condition){ if(condition) cout << "Yes" << endl; else cout << "No" << endl; }
inline void assertNO(bool condition){ if(!condition){ cout << "NO" << endl; exit(0); } }
inline void assertNo(bool condition){ if(!condition){ cout << "No" << endl; exit(0); } }
inline void assertm1(bool condition){ if(!condition){ cout << -1 << endl; exit(0); } }
lint power(lint base, lint exponent, lint module){ if(exponent % 2){ return power(base, exponent - 1, module) * base % module; }else if(exponent){ lint root_ans = power(base, exponent / 2, module); return root_ans * root_ans % module; }else{ return 1; }}
struct position{ int y, x; }; position mv[4] = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}}; double euclidean(position first, position second){ return sqrt((second.x - first.x) * (second.x - first.x) + (second.y - first.y) * (second.y - first.y)); }
template<class T, class U> string to_string(pair<T, U> x){ return to_string(x.first) + "," + to_string(x.second); } string to_string(string x){ return x; }
template<class T> string to_string(complex<T> x){ return to_string(make_pair(x.real(), x.imag())); }
template<class itr> void array_output(itr start, itr goal){ string ans; for(auto i = start; i != goal; i++) cout << (i == start ? "" : " ") << (*i); if(!ans.empty()) ans.pop_back(); cout << ans << endl; }
template<class itr> void cins(itr first, itr last){ for(auto i = first; i != last; i++){ cin >> (*i); } }
template<class T> T gcd(T a, T b){ if(b) return gcd(b, a % b); else return a; }
template<class T> T lcm(T a, T b){ return a / gcd(a, b) * b; }
struct combination{ vector<lint> fact, inv; combination(int sz) : fact(sz + 1), inv(sz + 1){ fact[0] = 1; for(int i = 1; i <= sz; i++){ fact[i] = fact[i - 1] * i % mod; } inv[sz] = power(fact[sz], mod - 2, mod); for(int i = sz - 1; i >= 0; i--){ inv[i] = inv[i + 1] * (i + 1) % mod; } } lint P(int n, int r){ if(r < 0 || n < r) return 0; return (fact[n] * inv[n - r] % mod); } lint C(int p, int q){ if(q < 0 || p < q) return 0; return (fact[p] * inv[q] % mod * inv[p - q] % mod); } };
template<class itr> bool next_sequence(itr first, itr last, int max_bound){ itr now = last; while(now != first){ now--; (*now)++; if((*now) == max_bound){ (*now) = 0; }else{ return true; } } return false; }
template<class itr, class itr2> bool next_sequence2(itr first, itr last, itr2 first2, itr2 last2){ itr now = last; itr2 now2 = last2; while(now != first){ now--, now2--; (*now)++; if((*now) == (*now2)){ (*now) = 0; }else{ return true; } } return false; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } return 0; }
template<class T> bool chmin(T &a, const T &b){ if(b < a){ a = b; return 1; } return 0; }
inline int at(lint i, int j){ return (i >> j) & 1; }
random_device rnd;
bool is_in_board(lint y, lint x, lint H, lint W){ return (0 <= y && y < H && 0 <= x && x < W); }
template< class Monoid, class OperatorMonoid = Monoid >
struct RandomizedBinarySearchTree
{
using F = function< Monoid(Monoid, Monoid) >;
using G = function< Monoid(Monoid, OperatorMonoid) >;
using H = function< OperatorMonoid(OperatorMonoid, OperatorMonoid) >;
using P = function< OperatorMonoid(OperatorMonoid, int) >;
inline int xor128()
{
static int x = 123456789;
static int y = 362436069;
static int z = 521288629;
static int w = 88675123;
int t;
t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
struct Node
{
Node *l, *r;
int cnt;
Monoid key, sum;
OperatorMonoid lazy;
Node() {}
Node(const Monoid &k, const OperatorMonoid &p) : cnt(1), key(k), sum(k), lazy(p), l(nullptr), r(nullptr) {}
};
vector< Node > pool;
int ptr;
const Monoid M1;
const OperatorMonoid OM0;
const F f;
const G g;
const H h;
const P p;
RandomizedBinarySearchTree(int sz, const F &f, const Monoid &M1) :
pool(sz), ptr(0), f(f), g(G()), h(H()), p(P()), M1(M1), OM0(OperatorMonoid()) {}
RandomizedBinarySearchTree(int sz, const F &f, const G &g, const H &h, const P &p,
const Monoid &M1, const OperatorMonoid &OM0) :
pool(sz), ptr(0), f(f), g(g), h(h), p(p), M1(M1), OM0(OM0) {}
inline Node *alloc(const Monoid &key) { return &(pool[ptr++] = Node(key, OM0)); }
virtual Node *clone(Node *t) { return t; }
inline int count(const Node *t) { return t ? t->cnt : 0; }
inline Monoid sum(const Node *t) { return t ? t->sum : M1; }
inline Node *update(Node *t)
{
t->cnt = count(t->l) + count(t->r) + 1;
t->sum = f(f(sum(t->l), sum(t->r)), t->key);
return t;
}
Node *propagete(Node *t)
{
t = clone(t);
if(t->lazy != OM0) {
t->key = g(t->key, t->lazy);
if(t->l) {
t->l = clone(t->l);
t->l->lazy = h(t->l->lazy, t->lazy);
t->l->sum = f(t->l->sum, p(t->lazy, count(t->l)));
}
if(t->r) {
t->r = clone(t->r);
t->r->lazy = h(t->r->lazy, t->lazy);
t->r->sum = f(t->r->sum, p(t->lazy, count(t->r)));
}
t->lazy = OM0;
}
return update(t);
}
Node *merge(Node *l, Node *r)
{
if(!l || !r) return l ? l : r;
if(xor128() % (l->cnt + r->cnt) < l->cnt) {
l = propagete(l);
l->r = merge(l->r, r);
return update(l);
} else {
r = propagete(r);
r->l = merge(l, r->l);
return update(r);
}
}
pair< Node *, Node * > split(Node *t, int k)
{
if(!t) return {t, t};
t = propagete(t);
if(k <= count(t->l)) {
auto s = split(t->l, k);
t->l = s.second;
return {s.first, update(t)};
} else {
auto s = split(t->r, k - count(t->l) - 1);
t->r = s.first;
return {update(t), s.second};
}
}
Node *build(int l, int r, const vector< Monoid > &v)
{
if(l + 1 >= r) return alloc(v[l]);
return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v));
}
Node *build(const vector< Monoid > &v)
{
ptr = 0;
return build(0, (int) v.size(), v);
}
void dump(Node *r, typename vector< Monoid >::iterator &it)
{
if(!r) return;
r = propagete(r);
dump(r->l, it);
*it = r->key;
dump(r->r, ++it);
}
vector< Monoid > dump(Node *r)
{
vector< Monoid > v((size_t) count(r));
auto it = begin(v);
dump(r, it);
return v;
}
string to_string(Node *r)
{
auto s = dump(r);
string ret;
for(int i = 0; i < s.size(); i++) ret += ", ";
return (ret);
}
void insert(Node *&t, int k, const Monoid &v)
{
auto x = split(t, k);
t = merge(merge(x.first, alloc(v)), x.second);
}
void erase(Node *&t, int k)
{
auto x = split(t, k);
t = merge(x.first, split(x.second, 1).second);
}
Monoid query(Node *&t, int a, int b)
{
auto x = split(t, a);
auto y = split(x.second, b - a);
auto ret = sum(y.first);
t = merge(x.first, merge(y.first, y.second));
return ret;
}
void set_propagate(Node *&t, int a, int b, const OperatorMonoid &p)
{
auto x = split(t, a);
auto y = split(x.second, b - a);
y.first->lazy = h(y.first->lazy, p);
t = merge(x.first, merge(propagete(y.first), y.second));
}
void set_element(Node *&t, int k, const Monoid &x)
{
t = propagete(t);
if(k < count(t->l)) set_element(t->l, k, x);
else if(k == count(t->l)) t->key = t->sum = x;
else set_element(t->r, k - count(t->l) - 1, x);
t = update(t);
}
int size(Node *t)
{
return count(t);
}
bool empty(Node *t)
{
return !t;
}
Node *makeset()
{
return (nullptr);
}
};
template< class T >
struct OrderedMultiSet : RandomizedBinarySearchTree< T >
{
using RBST = RandomizedBinarySearchTree< T >;
using Node = typename RBST::Node;
OrderedMultiSet(int sz) : RBST(sz, [&](T x, T y) { return x; }, T()) {}
T kth_element(Node *t, int k)
{
if(k < RBST::count(t->l)) return kth_element(t->l, k);
if(k == RBST::count(t->l)) return t->key;
return kth_element(t->r, k - RBST::count(t->l) - 1);
}
virtual void insert_key(Node *&t, const T &x)
{
RBST::insert(t, lower_bound(t, x), x);
}
void erase_key(Node *&t, const T &x)
{
if(!count(t, x)) return;
RBST::erase(t, lower_bound(t, x));
}
int count(Node *t, const T &x)
{
return upper_bound(t, x) - lower_bound(t, x);
}
int lower_bound(Node *t, const T &x)
{
if(!t) return 0;
if(x <= t->key) return lower_bound(t->l, x);
return lower_bound(t->r, x) + RBST::count(t->l) + 1;
}
int upper_bound(Node *t, const T &x)
{
if(!t) return 0;
if(x < t->key) return upper_bound(t->l, x);
return upper_bound(t->r, x) + RBST::count(t->l) + 1;
}
};
template< class T >
struct OrderedSet : OrderedMultiSet< T >
{
using SET = OrderedMultiSet< T >;
using RBST = typename SET::RBST;
using Node = typename RBST::Node;
OrderedSet(int sz) : OrderedMultiSet< T >(sz) {}
void insert_key(Node *&t, const T &x) override
{
if(SET::count(t, x)) return;
RBST::insert(t, SET::lower_bound(t, x), x);
}
};
int main(){
int N, K;
cin >> N >> K;
if(N * (N - 1) < K){
cout << "No" << endl;
return 0;
}
if(N == 1){
cout << "Yes\n0" << endl;
return 0;
}
if(N == 2 && K == 1){
cout << "Yes\n3 2\n0 1" << endl;
return 0;
}
int inversion = (K + 1) / 2;
OrderedSet<int> inversion_set(N);
auto root = inversion_set.makeset();
rep(i, N){
inversion_set.insert_key(root, i);
}
vector<int> inversed_array(N);
rep(i, N){
int inv_cnt = min(N - i - 1, inversion);
int num = inversion_set.kth_element(root, inv_cnt);
inversed_array[num] = i;
inversion_set.erase_key(root, num);
inversion -= inv_cnt;
}
int zero_pos = int(find(all(inversed_array), 0) - inversed_array.begin());
int ans[N][N];
rep(i, N){
rep(j, N){
ans[i][j] = i + j;
}
ans[i][N - inversed_array[i] - 1] = 1e6;
}
if(K % 2){
swap(ans[zero_pos][0], ans[zero_pos][1]);
}
cout << "Yes" << endl;
rep(i, N){
array_output(ans[i], ans[i] + N);
}
}