結果

問題 No.1089 三変数方程式
ユーザー oteraotera
提出日時 2020-06-25 00:14:43
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 7 ms / 2,000 ms
コード長 1,714 bytes
コンパイル時間 986 ms
コンパイル使用メモリ 111,064 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-03 20:29:52
合計ジャッジ時間 1,473 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 15
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 *    author:  otera    
**/
#include<iostream>
#include<string> 
#include<cstdio>
#include<cstring>
#include<vector>
#include<cmath>
#include<algorithm> 
#include<functional>
#include<iomanip>
#include<queue>
#include<deque>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<complex>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<cassert>
using namespace std;

//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
typedef long double ld;
const int inf=1e9+7;
const ll INF=1LL<<60 ;
const ll mod=1e9+7 ;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
typedef complex<ld> Point;
const ld eps = 1e-8;
const ld pi = acos(-1.0);
typedef pair<int, int> P;
typedef pair<ld, ld> LDP;
typedef pair<ll, ll> LP;
#define fr first
#define sc second
#define all(c) c.begin(),c.end()
#define pb push_back
#define debug(x)  cerr << #x << " = " << (x) << endl;
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }

void solve() {
	int n; cin >> n;
    int ans = 0;
    for(int x = 0; x <= n; ++ x) {
        for(int y = 0; y <= n; ++ y) {
            if(n - x - y >= 0) ++ ans;
        }
    }
    cout << ans << endl;
}

signed main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	//cout << fixed << setprecision(10);
	//int t; cin >> t; rep(i, t)solve();
	solve();
    return 0;
}
0