結果
問題 | No.147 試験監督(2) |
ユーザー | jupiro |
提出日時 | 2020-06-28 12:25:31 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 251 ms / 2,000 ms |
コード長 | 5,916 bytes |
コンパイル時間 | 1,591 ms |
コンパイル使用メモリ | 137,484 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-07 12:01:24 |
合計ジャッジ時間 | 3,581 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 251 ms
6,812 KB |
testcase_01 | AC | 251 ms
6,944 KB |
testcase_02 | AC | 249 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,944 KB |
ソースコード
#include <cstdio> #include <iostream> #include <string> #include <sstream> #include <stack> #include <algorithm> #include <cmath> #include <queue> #include <map> #include <set> #include <cstdlib> #include <bitset> #include <tuple> #include <assert.h> #include <deque> #include <bitset> #include <iomanip> #include <limits> #include <chrono> #include <random> #include <array> #include <unordered_map> #include <functional> #include <complex> #include <numeric> template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } constexpr long long MAX = 5100000; constexpr long long INF = 1LL << 60; constexpr int inf = 1000000007; constexpr long long mod = 1000000007LL; //constexpr long long mod = 998244353LL; const long double PI = acos((long double)(-1)); using namespace std; typedef unsigned long long ull; typedef long long ll; typedef long double ld; struct mint { long long x; mint(long long x = 0) :x((x% mod + mod) % mod) {} mint& operator+=(const mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod - a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this; } mint operator+(const mint a) const { mint res(*this); return res += a; } mint operator-(const mint a) const { mint res(*this); return res -= a; } mint operator*(const mint a) const { mint res(*this); return res *= a; } mint pow(ll t) const { if (!t) return 1; mint a = pow(t >> 1); a *= a; if (t & 1) a *= *this; return a; } // for prime mod mint inv() const { return pow(mod - 2); } mint& operator/=(const mint a) { return (*this) *= a.inv(); } mint operator/(const mint a) const { mint res(*this); return res /= a; } }; template< class T > struct Matrix { vector< vector< T > > A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {} Matrix(size_t n) : A(n, vector< T >(n, 0)) {}; size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector< T >& operator[](int k) const { return (A.at(k)); } inline vector< T >& operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for (int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix& operator+=(const Matrix& B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix& operator-=(const Matrix& B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix& operator*=(const Matrix& B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector< vector< T > > C(n, vector< T >(m, 0)); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) for (int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix& operator^=(long long k) { Matrix B = Matrix::I(height()); while (k > 0) { if (k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix& B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix& B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix& B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream& operator<<(ostream& os, Matrix& p) { size_t n = p.height(), m = p.width(); for (int i = 0; i < n; i++) { os << "["; for (int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for (int i = 0; i < width(); i++) { int idx = -1; for (int j = i; j < width(); j++) { if (B[j][i] != 0) idx = j; } if (idx == -1) return (0); if (i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for (int j = 0; j < width(); j++) { B[i][j] /= vv; } for (int j = i + 1; j < width(); j++) { T a = B[j][i]; for (int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; ll rm(string& s) { ll res = 0; for (int i = 0; i < s.size(); i++) { res = res * 10 % (mod - 1) + (s[i] - '0'); res %= (mod - 1); } return res; } mint solve(ll C) { Matrix<mint> mat(2, 2); mat[0][0] = 1; mat[0][1] = 1; mat[1][0] = 1; Matrix<mint> ini(2, 1); ini[0][0] = ini[1][0] = 1; mat ^= C - 1; mat *= ini; return mat[0][0] + mat[1][0]; } int main() { cin.tie(nullptr); ios::sync_with_stdio(false); mint res = 1; int kkt; cin >> kkt; while (kkt--) { ll C; string D; cin >> C >> D; C %= 2 * (mod + 1); mint t = solve(C); if (t.x == 0) res = 0; else res *= t.pow(rm(D)); } cout << res.x << "\n"; return 0; }