結果
| 問題 |
No.147 試験監督(2)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-06-28 12:25:31 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 300 ms / 2,000 ms |
| コード長 | 5,916 bytes |
| コンパイル時間 | 1,517 ms |
| コンパイル使用メモリ | 132,572 KB |
| 最終ジャッジ日時 | 2025-01-11 13:18:35 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 |
ソースコード
#include <cstdio>
#include <iostream>
#include <string>
#include <sstream>
#include <stack>
#include <algorithm>
#include <cmath>
#include <queue>
#include <map>
#include <set>
#include <cstdlib>
#include <bitset>
#include <tuple>
#include <assert.h>
#include <deque>
#include <bitset>
#include <iomanip>
#include <limits>
#include <chrono>
#include <random>
#include <array>
#include <unordered_map>
#include <functional>
#include <complex>
#include <numeric>
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
constexpr long long MAX = 5100000;
constexpr long long INF = 1LL << 60;
constexpr int inf = 1000000007;
constexpr long long mod = 1000000007LL;
//constexpr long long mod = 998244353LL;
const long double PI = acos((long double)(-1));
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef long double ld;
struct mint {
long long x;
mint(long long x = 0) :x((x% mod + mod) % mod) {}
mint& operator+=(const mint a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint a) {
if ((x += mod - a.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint a) {
(x *= a.x) %= mod;
return *this;
}
mint operator+(const mint a) const {
mint res(*this);
return res += a;
}
mint operator-(const mint a) const {
mint res(*this);
return res -= a;
}
mint operator*(const mint a) const {
mint res(*this);
return res *= a;
}
mint pow(ll t) const {
if (!t) return 1;
mint a = pow(t >> 1);
a *= a;
if (t & 1) a *= *this;
return a;
}
// for prime mod
mint inv() const {
return pow(mod - 2);
}
mint& operator/=(const mint a) {
return (*this) *= a.inv();
}
mint operator/(const mint a) const {
mint res(*this);
return res /= a;
}
};
template< class T >
struct Matrix {
vector< vector< T > > A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}
Matrix(size_t n) : A(n, vector< T >(n, 0)) {};
size_t height() const {
return (A.size());
}
size_t width() const {
return (A[0].size());
}
inline const vector< T >& operator[](int k) const {
return (A.at(k));
}
inline vector< T >& operator[](int k) {
return (A.at(k));
}
static Matrix I(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix& operator+=(const Matrix& B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
(*this)[i][j] += B[i][j];
return (*this);
}
Matrix& operator-=(const Matrix& B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
Matrix& operator*=(const Matrix& B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector< vector< T > > C(n, vector< T >(m, 0));
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
for (int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
Matrix& operator^=(long long k) {
Matrix B = Matrix::I(height());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix& B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix& B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix& B) const {
return (Matrix(*this) *= B);
}
Matrix operator^(const long long k) const {
return (Matrix(*this) ^= k);
}
friend ostream& operator<<(ostream& os, Matrix& p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; i++) {
os << "[";
for (int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); i++) {
int idx = -1;
for (int j = i; j < width(); j++) {
if (B[j][i] != 0) idx = j;
}
if (idx == -1) return (0);
if (i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for (int j = i + 1; j < width(); j++) {
T a = B[j][i];
for (int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
ll rm(string& s) {
ll res = 0;
for (int i = 0; i < s.size(); i++) {
res = res * 10 % (mod - 1) + (s[i] - '0');
res %= (mod - 1);
}
return res;
}
mint solve(ll C) {
Matrix<mint> mat(2, 2);
mat[0][0] = 1;
mat[0][1] = 1;
mat[1][0] = 1;
Matrix<mint> ini(2, 1);
ini[0][0] = ini[1][0] = 1;
mat ^= C - 1;
mat *= ini;
return mat[0][0] + mat[1][0];
}
int main()
{
cin.tie(nullptr);
ios::sync_with_stdio(false);
mint res = 1;
int kkt; cin >> kkt;
while (kkt--) {
ll C;
string D;
cin >> C >> D;
C %= 2 * (mod + 1);
mint t = solve(C);
if (t.x == 0) res = 0;
else res *= t.pow(rm(D));
}
cout << res.x << "\n";
return 0;
}