結果
問題 | No.1068 #いろいろな色 / Red and Blue and more various colors (Hard) |
ユーザー | eSeF |
提出日時 | 2020-07-08 00:14:44 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 12,373 bytes |
コンパイル時間 | 2,593 ms |
コンパイル使用メモリ | 121,552 KB |
実行使用メモリ | 77,848 KB |
最終ジャッジ日時 | 2024-10-01 22:17:42 |
合計ジャッジ時間 | 10,244 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 31 ms
77,848 KB |
testcase_01 | AC | 31 ms
19,528 KB |
testcase_02 | AC | 31 ms
19,840 KB |
testcase_03 | AC | 254 ms
23,336 KB |
testcase_04 | AC | 194 ms
22,448 KB |
testcase_05 | AC | 215 ms
23,040 KB |
testcase_06 | AC | 165 ms
22,352 KB |
testcase_07 | AC | 151 ms
21,532 KB |
testcase_08 | AC | 202 ms
22,496 KB |
testcase_09 | AC | 228 ms
23,296 KB |
testcase_10 | AC | 113 ms
21,244 KB |
testcase_11 | AC | 148 ms
21,488 KB |
testcase_12 | AC | 99 ms
21,072 KB |
testcase_13 | TLE | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System; using System.Collections.Generic; using System.Linq; using System.IO; using System.Text; using System.Numerics; using System.Threading; using System.Runtime.CompilerServices; using static System.Math; using static System.Array; using static AtCoder.Sc_out; using static AtCoder.Tool; using static AtCoder.ModInt; namespace AtCoder { class AC { //const int MOD = 1000000007; const int MOD = 998244353; const int INF = int.MaxValue / 2; const long SINF = long.MaxValue / 2; const double EPS = 1e-8; static readonly int[] dI = { 0, 1, 0, -1, 1, -1, -1, 1 }; static readonly int[] dJ = { 1, 0, -1, 0, 1, 1, -1, -1 }; //static List<List<int>> G = new List<List<int>>(); //static List<List<Edge>> G = new List<List<Edge>>(); //static List<Edge> E = new List<Edge>(); static void Main(string[] args) { var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; Console.SetOut(sw); var th = new Thread(Run, 1 << 26); th.Start(); th.Join(); //Run(); Console.Out.Flush(); } static void Run() { int Testcase = 1; for (var _ = 0; _ < Testcase; _++) Solve(); } static void Solve() { Cin.Input(out int N, out int Q); var A = Cin.ReadSplitLong; var B = Cin.ReadSplitLong; var pl = new Queue<long[]>(); var calc = new Math_NTT(998244353, 3); for (var i = 0; i < N; i++) { var now = new long[] { (A[i] - 1 + MOD) % MOD, 1 }; pl.Enqueue(now); } while (pl.Count() > 1) { var a = pl.Dequeue(); var b = pl.Dequeue(); var c = calc.Convolution_NTT(a, b); pl.Enqueue(c); } var ans = pl.Dequeue(); for (var i = 0; i < Q; i++) OutL(ans[B[i]]); } public struct Edge { public int from; public int to; public long dist; public Edge(int t, long c) { from = -1; to = t; dist = c; } public Edge(int f, int t, long c) { from = f; to = t; dist = c; } } } public class Math_NTT { private long mod; private long root; public Math_NTT(long prime_mod, long premitive_root) { mod = prime_mod; root = premitive_root; } [MethodImpl(MethodImplOptions.AggressiveInlining)] long modpow(long x, long nn) => nn == 0 ? 1 : (nn % 2 == 0 ? modpow((x * x) % mod, nn / 2) : (x * modpow(x, nn - 1)) % mod); [MethodImpl(MethodImplOptions.AggressiveInlining)] long inverse(long x) => modpow(x, mod - 2); [MethodImpl(MethodImplOptions.AggressiveInlining)] public long[] NTT(long[] a, bool inv = false) { int n = a.Length; int h = 0; for (var i = 0; (1 << i) < n; i++) h++; //バタフライ演算準備 for (var i = 0; i < n; i++) { int j = 0; for (var k = 0; k < h; k++) j |= ((i >> k) & 1) << (h - 1 - k); //2進法表記が逆の数字とスワップする if (i < j) { var kep = a[i]; a[i] = a[j]; a[j] = kep; } } //バタフライ演算パート for (var b = 1; b < n; b <<= 1) { long W = modpow(root, (inv ? (mod - 1) - (mod - 1) / (b << 1) : (mod - 1) / (b << 1))); long z = 1; for (var j = 0; j < b; j++) { for (var k = 0; k < n; k += (b << 1)) { var s = a[k + j]; var t = (a[k + j + b] * z) % mod; a[k + j] = (s + t) % mod; a[k + j + b] = (s - t + mod) % mod; } z = (z * W) % mod; } } if (inv) { for (var i = 0; i < n; i++) a[i] = (a[i] * modpow(n, mod - 2)) % mod; } return a; } /*void NTT(ref long[] a, bool rev = false) { var n = (long)a.Length; if (n == 1) return; var b = new long[n]; var s = modpow(root, rev ? (mod - 1 - (mod - 1) / n) : (mod - 1) / n); var kp = Enumerable.Repeat((long)1, (int)(n / 2 + 1)).ToArray(); long i, j, k, l, r; for (i = 0; i < n / 2; ++i) kp[i + 1] = (kp[i] * s) % mod; for (i = 1, l = n / 2; i < n; i <<= 1, l >>= 1) { for (j = 0, r = 0; j < l; ++j, r += i) { for (k = 0, s = kp[i * j]; k < i; ++k) { var p = a[k + r]; var q = a[k + r + n / 2]; b[k + 2 * r] = (p + q) % mod; b[k + 2 * r + i] = ((p - q + mod) % mod * s) % mod; } } var t = a; a = b; b = t; } if (rev) { s = inverse(n); for (i = 0; i < n; ++i) a[i] = (a[i] * s) % mod; } }*/ /*[MethodImpl(MethodImplOptions.AggressiveInlining)] public long[] Convolution_NTT(long[] a, long[] b) { int N = a.Length + b.Length - 1; int t = 1; while (t < N) t <<= 1; var nxa = new long[t]; var nxb = new long[t]; for (var i = 0; i < t; i++) { nxa[i] = i < a.Length ? a[i] : 0; nxb[i] = i < b.Length ? b[i] : 0; } NTT(ref nxa); NTT(ref nxb); for (var i = 0; i < t; i++) nxa[i] = (nxa[i] * nxb[i]) % mod; NTT(ref nxa, true); var ret = new long[N]; for (var i = 0; i < N; i++) ret[i] = nxa[i]; return ret; }*/ public long[] Convolution_NTT(long[] a, long[] b) { //memo: mod 998244353 => primitive_root = 3 // mod 924844033 => root = 5 int N = a.Length + b.Length - 1; int t = 1; while (t < N) t <<= 1; var nxa = new long[t]; var nxb = new long[t]; for (var i = 0; i < t; i++) { nxa[i] = i < a.Length ? a[i] : 0; nxb[i] = i < b.Length ? b[i] : 0; } var A = NTT(nxa); var B = NTT(nxb); for (var i = 0; i < t; i++) A[i] = (A[i] * B[i]) % mod; A = NTT(A, true); var ret = new long[N]; for (var i = 0; i < N; i++) ret[i] = A[i]; return ret; } } struct ModInt { public long value; //private const int MOD = 1000000007; private const int MOD = 998244353; public ModInt(long value) { this.value = value; } public static implicit operator ModInt(long a) { var ret = a % MOD; return new ModInt(ret < 0 ? (ret + MOD) : ret); } public static ModInt operator +(ModInt a, ModInt b) => (a.value + b.value); public static ModInt operator -(ModInt a, ModInt b) => (a.value - b.value); public static ModInt operator *(ModInt a, ModInt b) => (a.value * b.value); public static ModInt operator /(ModInt a, ModInt b) => a * Modpow(b, MOD - 2); public static ModInt operator <<(ModInt a, int n) => (a.value << n); public static ModInt operator >>(ModInt a, int n) => (a.value >> n); public static ModInt operator ++(ModInt a) => a.value + 1; public static ModInt operator --(ModInt a) => a.value - 1; public static ModInt Modpow(ModInt a, long n) { var k = a; ModInt ret = 1; while (n > 0) { if ((n & 1) != 0) ret *= k; k *= k; n >>= 1; } return ret; } private static readonly List<long> Factorials = new List<long>() { 1 }; public static ModInt Fac(long n) { for (var i = Factorials.Count(); i <= n; i++) { Factorials.Add((Factorials[i - 1] * i) % MOD); } return Factorials[(int)n]; } public static ModInt nCr(long n, long r) { return n < r ? 0 : Fac(n) / (Fac(r) * Fac(n - r)); } public static explicit operator int(ModInt a) => (int)a.value; } static class Cin { public static string[] ReadSplit => Console.ReadLine().Split(); public static int[] ReadSplitInt => ConvertAll(Console.ReadLine().Split(), int.Parse); public static long[] ReadSplitLong => ConvertAll(Console.ReadLine().Split(), long.Parse); public static double[] ReadSplit_Double => ConvertAll(Console.ReadLine().Split(), double.Parse); public static string Str => Console.ReadLine(); public static int Int => int.Parse(Console.ReadLine()); public static long Long => long.Parse(Console.ReadLine()); public static double Double => double.Parse(Console.ReadLine()); public static T Conv<T>(string input) { if (typeof(T).Equals(typeof(ModInt))) { return (T)(dynamic)(long.Parse(input)); } return (T)Convert.ChangeType(input, typeof(T)); } public static void Input<T>(out T a) => a = Conv<T>(Console.ReadLine()); public static void Input<T, U>(out T a, out U b) { var q = ReadSplit; a = Conv<T>(q[0]); b = Conv<U>(q[1]); } public static void Input<T, U, V>(out T a, out U b, out V c) { var q = ReadSplit; a = Conv<T>(q[0]); b = Conv<U>(q[1]); c = Conv<V>(q[2]); } public static void Input<T, U, V, W>(out T a, out U b, out V c, out W d) { var q = ReadSplit; a = Conv<T>(q[0]); b = Conv<U>(q[1]); c = Conv<V>(q[2]); d = Conv<W>(q[3]); } public static void Input<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e) { var q = ReadSplit; a = Conv<T>(q[0]); b = Conv<U>(q[1]); c = Conv<V>(q[2]); d = Conv<W>(q[3]); e = Conv<X>(q[4]); } } static class Sc_out { public static void OutL(object s) => Console.WriteLine(s); public static void Out_Sep<T>(IEnumerable<T> s) => Console.WriteLine(string.Join(" ", s)); public static void Out_Sep<T>(IEnumerable<T> s, string sep) => Console.WriteLine(string.Join($"{sep}", s)); public static void Out_Sep(params object[] s) => Console.WriteLine(string.Join(" ", s)); public static void Out_One(object s) => Console.Write($"{s} "); public static void Out_One(object s, string sep) => Console.Write($"{s}{sep}"); public static void Endl() => Console.WriteLine(); } public static class Tool { static public void Initialize<T>(ref T[] array, T initialvalue) { array = ConvertAll(array, x => initialvalue); } static public void Swap<T>(ref T a, ref T b) { T keep = a; a = b; b = keep; } static public void Display<T>(T[,] array2d, int n, int m) { for (var i = 0; i < n; i++) { for (var j = 0; j < m; j++) { Console.Write($"{array2d[i, j]} "); } Console.WriteLine(); } } static public long Gcd(long a, long b) { if (a == 0 || b == 0) return Max(a, b); return a % b == 0 ? b : Gcd(b, a % b); } static public long LPow(int a, int b) => (long)Pow(a, b); static public bool Bit(long x, int dig) => ((1L << dig) & x) != 0; static public int Sig(long a) => a == 0 ? 0 : (int)(a / Abs(a)); } }