結果
| 問題 |
No.1112 冥界の音楽
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-07-10 21:53:29 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 32 ms / 2,000 ms |
| コード長 | 8,670 bytes |
| コンパイル時間 | 1,755 ms |
| コンパイル使用メモリ | 179,228 KB |
| 実行使用メモリ | 6,824 KB |
| 最終ジャッジ日時 | 2024-10-11 08:57:29 |
| 合計ジャッジ時間 | 2,926 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 34 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
// Define
using ll = long long;
using ull = unsigned long long;
using ld = long double;
template <class T> using pvector = vector<pair<T, T>>;
template <class T>
using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;
constexpr const ll dx[4] = {1, 0, -1, 0};
constexpr const ll dy[4] = {0, 1, 0, -1};
constexpr const ll MOD = 1e9 + 7;
constexpr const ll mod = 998244353;
constexpr const ll INF = 1LL << 60;
constexpr const ll inf = 1 << 30;
constexpr const char rt = '\n';
constexpr const char sp = ' ';
#define len(x) ((ll) x.size())
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define mp make_pair
#define mt make_tuple
#define pb push_back
#define eb emplace_back
#define ifn(x) if (not(x))
#define elif else if
#define elifn else ifn
#define fi first
#define se second
template <class T> bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T> bool chmin(T &a, const T &b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
// Debug
#define debug(...) \
{ \
cerr << __LINE__ << ": " << #__VA_ARGS__ << " = "; \
for (auto &&X : {__VA_ARGS__}) cerr << "[" << X << "] "; \
cerr << rt; \
}
#define dump(a, h, w) \
{ \
cerr << __LINE__ << ": " << #a << " = [" << rt; \
rep(_i, h) { \
rep(_j, w) { \
if (abs(a[_i][_j]) >= INF / 2 and a[_i][_j] <= -INF / 2) \
cerr << '-'; \
if (abs(a[_i][_j]) >= INF / 2) \
cerr << "∞" << sp; \
else \
cerr << a[_i][_j] << sp; \
} \
cerr << rt; \
} \
cerr << "]" << rt; \
}
#define vdump(a, n) \
{ \
cerr << __LINE__ << ": " << #a << " = ["; \
rep(_i, n) { \
if (_i) cerr << sp; \
if (abs(a[_i]) >= INF / 2 and a[_i] <= -INF / 2) cerr << '-'; \
if (abs(a[_i]) >= INF / 2) \
cerr << "∞" << sp; \
else \
cerr << a[_i]; \
} \
cerr << "]" << rt; \
}
// Loop
#define inc(i, a, n) for (ll i = (a), _##i = (n); i <= _##i; ++i)
#define dec(i, a, n) for (ll i = (a), _##i = (n); i >= _##i; --i)
#define rep(i, n) for (ll i = 0, _##i = (n); i < _##i; ++i)
#define each(i, a) for (auto &&i : a)
// Stream
#define fout(n) cout << fixed << setprecision(n)
struct io {
io() { cin.tie(nullptr), ios::sync_with_stdio(false); }
} io;
// Speed
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// Math
inline constexpr ll gcd(const ll a, const ll b) {
return b ? gcd(b, a % b) : a;
}
inline constexpr ll lcm(const ll a, const ll b) { return a / gcd(a, b) * b; }
inline constexpr ll modulo(const ll n, const ll m = MOD) {
ll k = n % m;
return k + m * (k < 0);
}
inline constexpr ll chmod(ll &n, const ll m = MOD) {
n %= m;
return n += m * (n < 0);
}
inline constexpr ll mpow(ll a, ll n, const ll m = MOD) {
ll r = 1;
rep(i, 64) {
if (n & (1LL << i)) r *= a;
chmod(r, m);
a *= a;
chmod(a, m);
}
return r;
}
inline ll inv(const ll n, const ll m = MOD) {
ll a = n, b = m, x = 1, y = 0;
while (b) {
ll t = a / b;
a -= t * b;
swap(a, b);
x -= t * y;
swap(x, y);
}
return modulo(x, m);
}
const ll mo = 1e9 + 7;
struct mint {
ll x;
mint(ll x = 0) : x((x % mo + mo) % mo) {}
mint operator-() const { return mint(-x); }
mint &operator+=(const mint &a) {
if ((x += a.x) >= mo) x -= mo;
return *this;
}
mint &operator-=(const mint &a) {
if ((x += mo - a.x) >= mo) x -= mo;
return *this;
}
mint &operator*=(const mint &a) {
(x *= a.x) %= mo;
return *this;
}
mint operator+(const mint &a) const { return mint(*this) += a; }
mint operator-(const mint &a) const { return mint(*this) -= a; }
mint operator*(const mint &a) const { return mint(*this) *= a; }
bool operator==(const mint &a) const { return x == a.x; }
bool operator!=(const mint &a) const { return x != a.x; }
bool operator<=(const mint &a) { return x <= a.x; }
bool operator<(const mint &a) { return x < a.x; }
friend ll abs(const mint &a) { return a.x; }
friend mint pow(const mint &a, ll n) {
if (!n) return 1;
mint b = pow(a, n >> 1);
b *= b;
if (n & 1) b *= a;
return b;
}
mint inv() const { return pow(*this, mo - 2); }
mint &operator/=(mint a) { return (*this) *= a.inv(); }
mint operator/(mint a) const { return mint(*this) /= a; }
friend istream &operator>>(istream &is, mint &a) {
ll t;
is >> t;
a = mint(t);
return is;
}
friend ostream &operator<<(ostream &os, mint a) {
os << a.x;
return os;
}
};
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wliteral-suffix"
mint operator"" M(const ull n) { return mint(n); }
#pragma GCC diagnostic pop
namespace Matrix {
using T = mint;
using matrix = vector<vector<T>>;
matrix E(ll N) {
matrix A(N, vector<T>(N));
rep(i, N) A[i][i] = 1;
return A;
}
matrix add(matrix A, matrix B) {
int m = A.size(), n = A[0].size();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] += B[i][j];
}
}
return A;
}
matrix t(matrix A) {
int m = A.size(), n = A[0].size();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i < j) swap(A[i][j], A[j][i]);
}
}
return A;
}
matrix multiple(T A, matrix B) {
int m = B.size(), n = B[0].size();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
B[i][j] *= A;
}
}
return B;
}
matrix product(matrix A, matrix B) {
int m = A.size(), n = B.size(), l = B[0].size();
matrix C(m, vector<T>(l));
for (int i = 0; i < m; i++) {
for (int j = 0; j < l; j++) {
for (int k = 0; k < n; k++) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
return C;
}
matrix pow(matrix A, ll N) {
if (!N) return E(A.size());
matrix B = pow(A, N >> 1);
B = product(B, B);
if (N & 1) B = product(B, A);
return B;
}
void print(matrix A) {
int m = A.size(), n = A[0].size();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
cout << A[i][j] << (j == n - 1 ? '\n' : ' ');
}
}
}
} // namespace Matrix
signed main() {
using namespace Matrix;
ll K, M, N;
cin >> K >> M >> N;
matrix P(K * K, vector<mint>(K * K)), Q(K * K, vector<mint>(1));
rep(i, K) Q[i][0] = 1;
rep(i, M) {
ll A, B, C;
cin >> A >> B >> C;
P[(B - 1) * K + (C - 1)][(A - 1) * K + (B - 1)] = 1;
}
matrix R = product(pow(P, N - 2), Q);
mint res = 0;
rep(i, K) res += R[i * K][0];
cout << res << rt;
}