結果
| 問題 | No.1253 雀見椪 | 
| コンテスト | |
| ユーザー | 👑  Kazun | 
| 提出日時 | 2020-07-12 04:02:18 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 327 ms / 2,000 ms | 
| コード長 | 2,895 bytes | 
| コンパイル時間 | 176 ms | 
| コンパイル使用メモリ | 82,332 KB | 
| 実行使用メモリ | 77,824 KB | 
| 最終ジャッジ日時 | 2024-07-04 23:21:42 | 
| 合計ジャッジ時間 | 4,477 ms | 
| ジャッジサーバーID (参考情報) | judge5 / judge1 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 1 | 
| other | AC * 14 | 
ソースコード
class Modulo_Error(Exception):
    pass
class Modulo():
    def __init__(self,a,n):
        self.a=a%n
        self.n=n
    def __str__(self):
        return "{} (mod {})".format(self.a,self.n)
    #+,-
    def __pos__(self):
        return self
    def __neg__(self):
        return  Modulo(-self.a,self.n)
    #等号,不等号
    def __eq__(self,other):
        if isinstance(other,Modulo):
            return (self.a==other.a) and (self.n==other.n)
        elif isinstance(other,int):
            return (self-other).a==0
    def __neq__(self,other):
        return not(self==other)
    
    #加法
    def __add__(self,other):
        if isinstance(other,Modulo):
            if self.n!=other.n:
                raise Modulo_Error("異なる法同士の演算です.")
            return Modulo(self.a+other.a,self.n)
        elif isinstance(other,int):
            return Modulo(self.a+other,self.n)
    def __radd__(self,other):
        if isinstance(other,int):
            return Modulo(self.a+other,self.n)
        
    #減法
    def __sub__(self,other):
        return self+(-other)
    def __rsub__(self,other):
        if isinstance(other,int):
            return -self+other
        
    #乗法
    def __mul__(self,other):
        if isinstance(other,Modulo):
            if self.n!=other.n:
                raise Modulo_Error("異なる法同士の演算です.")
            return Modulo(self.a*other.a,self.n)
        elif isinstance(other,int):
            return Modulo(self.a*other,self.n)
        
    def __rmul__(self,other):
        if isinstance(other,int):
            return Modulo(self.a*other,self.n)
        
    #Modulo逆数
    def Modulo_Inverse(self):
        x0, y0, x1, y1 = 1, 0, 0, 1
        a,b=self.a,self.n
        while b != 0:
            q, a, b = a // b, b, a % b
            x0, x1 = x1, x0 - q * x1
            y0, y1 = y1, y0 - q * y1
        if a!=1:
            raise Modulo_Error("{}の逆数が存在しません".format(self))
        else:
            return Modulo(x0,self.n)
    #除法
    def __truediv__(self,other):
        return self*(other.Modulo_Inverse())
    
    def __rtruediv__(self,other):
        return other*(self.Modulo_Inverse())
    #累乗
    def __pow__(self,m):
        u=abs(m)
        r=Modulo(1,self.n)
        while u>0:
            if u%2==1:
                r*=self
            self*=self
            u=u>>1
        if m>=0:
            return r
        else:
            return r.Modulo_Inverse()
#---------------------------------------------------------------------
M=10**9+7
T=int(input())
H=[]
for _ in range(T):
    U=list(map(int,input().split()))
    N=U[0]
    A=Modulo(U[1],M)/Modulo(U[2],M)
    B=Modulo(U[3],M)/Modulo(U[4],M)
    C=Modulo(U[5],M)/Modulo(U[6],M)
    X=(A+B)**N+(B+C)**N+(C+A)**N
    Y=A**N+B**N+C**N
    H.append((1-X+2*Y).a)
print("\n".join(map(str,H)))
            
            
            
        