結果
| 問題 |
No.1031 いたずら好きなお姉ちゃん
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-07-15 05:14:53 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 142 ms / 3,500 ms |
| コード長 | 6,930 bytes |
| コンパイル時間 | 1,290 ms |
| コンパイル使用メモリ | 84,812 KB |
| 最終ジャッジ日時 | 2025-01-11 20:53:22 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 53 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:60:17: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
60 | std::vector<std::vector<int> > adjacent_list_from_children(const std::vector<std::vector<int> > & children) {
| ~~~~~^~~~~~~~~~
main.cpp:63:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
63 | REP (x, n) {
| ~~~~~^~~
ソースコード
#line 1 "main.cpp"
#define PROBLEM
#line 2 "/home/user/Library/utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 2 "/home/user/Library/graph/cartesian_tree.hpp"
#include <functional>
#include <vector>
#line 5 "/home/user/Library/graph/cartesian_tree.hpp"
/**
* @brief Cartesian tree ($O(n)$)
* @note the smallest value is the root
* @note if a is not distinct, the way for tie-break is undefined
* @return the binary tree as the list of parents
*/
template <class T, class Comparator = std::less<int> >
std::vector<int> construct_cartesian_tree(const std::vector<T> & a, const Comparator & cmp = Comparator()) {
int n = a.size();
std::vector<int> parent(n, -1);
REP3 (i, 1, n) {
int p = i - 1;
int l = -1;
while (p != -1 and cmp(a[i], a[p])) {
int pp = parent[p];
if (l != -1) {
parent[l] = p;
}
parent[p] = i;
p = pp;
}
parent[i] = p;
}
return parent;
}
#line 2 "/home/user/Library/graph/format.hpp"
#include <cassert>
#include <utility>
#line 6 "/home/user/Library/graph/format.hpp"
std::pair<std::vector<std::vector<int> >, int> children_from_parent(const std::vector<int> & parent) {
int n = parent.size();
std::vector<std::vector<int> > children(n);
int root = -1;
REP (x, n) {
if (parent[x] == -1) {
assert (root == -1);
root = x;
} else {
children[parent[x]].push_back(x);
}
}
assert (root != -1);
return std::make_pair(children, root);
}
std::vector<std::vector<int> > adjacent_list_from_children(const std::vector<std::vector<int> > & children) {
int n = children.size();
std::vector<std::vector<int> > g(n);
REP (x, n) {
for (int y : children[x]) {
g[x].push_back(y);
g[y].push_back(x);
}
}
return g;
}
#line 2 "/home/user/Library/graph/subtree.hpp"
#include <algorithm>
#line 4 "/home/user/Library/graph/subtree.hpp"
struct subtree_info_t {
int parent; // in the entire tree
int depth; // in the entire tree
int size; // of the subtree
int height; // of the subtree
};
/**
* @brief subtree info / それぞれの部分木の size とか height とかをまとめて求めておいてくれるやつ
* @arg g must be a tree
* @note O(n) time
* @note O(n) space on heap
*/
std::vector<subtree_info_t> prepare_subtree_info(std::vector<std::vector<int> > const & g, int root) {
int n = g.size();
std::vector<subtree_info_t> info(n, (subtree_info_t) { -1, -1, -1, -1 });
std::vector<int> topological(n);
topological[0] = root;
info[root].parent = root;
info[root].depth = 0;
int r = 1;
for (int l = 0; l < r; ++ l) {
int i = topological[l];
for (int j : g[i]) if (j != info[i].parent) {
topological[r ++] = j;
info[j].parent = i;
info[j].depth = info[i].depth + 1;
}
}
while ((-- r) >= 0) {
int i = topological[r];
info[i].size = 1;
info[i].height = 0;
for (int j : g[i]) if (j != info[i].parent) {
info[i].size += info[j].size;
info[i].height = std::max(info[i].height, info[j].height + 1);
}
}
info[root].parent = -1;
return info;
}
#line 5 "/home/user/Library/data_structure/sparse_table.hpp"
/**
* @brief Sparse Table (idempotent monoid)
* @note the unit is required just for convenience
* @note $O(N \log N)$ space
*/
template <class IdempotentMonoid>
struct sparse_table {
typedef typename IdempotentMonoid::value_type value_type;
std::vector<std::vector<value_type> > table;
IdempotentMonoid mon;
sparse_table() = default;
/**
* @note $O(N \log N)$ time
*/
template <class InputIterator>
sparse_table(InputIterator first, InputIterator last, const IdempotentMonoid & mon_ = IdempotentMonoid())
: mon(mon_) {
table.emplace_back(first, last);
int n = table[0].size();
int log_n = 32 - __builtin_clz(n);
table.resize(log_n, std::vector<value_type>(n));
REP (k, log_n - 1) {
REP (i, n) {
table[k + 1][i] = i + (1ll << k) < n ?
mon.mult(table[k][i], table[k][i + (1ll << k)]) :
table[k][i];
}
}
}
/**
* @note $O(1)$
*/
value_type range_get(int l, int r) const {
if (l == r) return mon.unit(); // if there is no unit, remove this line
assert (0 <= l and l < r and r <= (int)table[0].size());
int k = 31 - __builtin_clz(r - l); // log2
return mon.mult(table[k][l], table[k][r - (1ll << k)]);
}
};
#line 3 "/home/user/Library/monoids/min.hpp"
#include <limits>
template <class T>
struct min_monoid {
typedef T value_type;
value_type unit() const { return std::numeric_limits<T>::max(); }
value_type mult(value_type a, value_type b) const { return std::min(a, b); }
};
#line 8 "main.cpp"
#include <cstdio>
#line 12 "main.cpp"
using namespace std;
int64_t solve1(int n, const vector<int> & p) {
// prepare a data structure for LIS
vector<int> depth(n);
{
vector<int> parent = construct_cartesian_tree<int, greater<int> >(p);
vector<vector<int> > children; int root; tie(children, root) = children_from_parent(parent);
auto g = adjacent_list_from_children(children);
auto info = prepare_subtree_info(g, root);
REP (x, n) {
depth[x] = info[x].depth;
}
}
sparse_table<min_monoid<int> > table(ALL(depth));
auto lis = [&](int l, int r) {
if (l == r) return 0;
return depth[l] - table.range_get(l, r) + 1;
};
// fold the Cartesian tree
vector<int> parent = construct_cartesian_tree(p);
vector<vector<int> > children; int root; tie(children, root) = children_from_parent(parent);
int64_t ans = 0;
auto go = [&](auto && go, int l, int m, int r) -> void {
if (l == r) {
return;
}
ans += lis(m + 1, r);
for (int x : children[m]) {
if (x < m) {
go(go, l, x, m);
} else {
go(go, m + 1, x, r);
}
}
};
go(go, 0, root, n);
return ans;
}
int64_t solve(int n, vector<int> p) {
int64_t ans = solve1(n, p);
reverse(ALL(p));
return ans + solve1(n, p);
}
int main() {
int n; scanf("%d", &n);
vector<int> p(n);
REP (i, n) {
scanf("%d", &p[i]);
}
long long ans = solve(n, p);
printf("%lld\n", ans);
return 0;
}