結果

問題 No.1031 いたずら好きなお姉ちゃん
ユーザー kimiyuki
提出日時 2020-07-16 03:24:44
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 127 ms / 3,500 ms
コード長 7,136 bytes
コンパイル時間 1,410 ms
コンパイル使用メモリ 112,964 KB
最終ジャッジ日時 2025-01-11 21:22:57
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 53
権限があれば一括ダウンロードができます
コンパイルメッセージ
graph/cartesian_tree.yukicoder-1031.test.cpp: In function ‘int main()’:
graph/cartesian_tree.yukicoder-1031.test.cpp:48:17: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
graph/cartesian_tree.yukicoder-1031.test.cpp:51:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "graph/cartesian_tree.yukicoder-1031.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1031"
#line 2 "utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 2 "graph/cartesian_tree.hpp"
#include <functional>
#include <vector>
#line 5 "graph/cartesian_tree.hpp"
/**
* @brief Cartesian tree ($O(n)$)
* @note the smallest value is the root
* @note if a is not distinct, the way for tie-break is undefined
* @return the binary tree as the list of parents
*/
template <class T, class Comparator = std::less<int> >
std::vector<int> construct_cartesian_tree(const std::vector<T> & a, const Comparator & cmp = Comparator()) {
int n = a.size();
std::vector<int> parent(n, -1);
REP3 (i, 1, n) {
int p = i - 1; // parent of i
int l = -1; // left child of i
while (p != -1 and cmp(a[i], a[p])) {
int pp = parent[p]; // parent of parent of i
if (l != -1) {
parent[l] = p;
}
parent[p] = i;
l = p;
p = pp;
}
parent[i] = p;
}
return parent;
}
#line 2 "graph/format.hpp"
#include <cassert>
#include <utility>
#line 6 "graph/format.hpp"
std::pair<std::vector<std::vector<int> >, int> children_from_parent(const std::vector<int> & parent) {
int n = parent.size();
std::vector<std::vector<int> > children(n);
int root = -1;
REP (x, n) {
if (parent[x] == -1) {
assert (root == -1);
root = x;
} else {
children[parent[x]].push_back(x);
}
}
assert (root != -1);
return std::make_pair(children, root);
}
std::vector<std::vector<int> > adjacent_list_from_children(const std::vector<std::vector<int> > & children) {
int n = children.size();
std::vector<std::vector<int> > g(n);
REP (x, n) {
for (int y : children[x]) {
g[x].push_back(y);
g[y].push_back(x);
}
}
return g;
}
#line 2 "utils/greedily_increasing_subsequence.hpp"
#include <stack>
#include <tuple>
#line 5 "data_structure/sparse_table.hpp"
/**
* @brief Sparse Table (idempotent monoid)
* @note the unit is required just for convenience
* @note $O(N \log N)$ space
*/
template <class IdempotentMonoid>
struct sparse_table {
typedef typename IdempotentMonoid::value_type value_type;
std::vector<std::vector<value_type> > table;
IdempotentMonoid mon;
sparse_table() = default;
/**
* @note $O(N \log N)$ time
*/
template <class InputIterator>
sparse_table(InputIterator first, InputIterator last, const IdempotentMonoid & mon_ = IdempotentMonoid())
: mon(mon_) {
table.emplace_back(first, last);
int n = table[0].size();
int log_n = 32 - __builtin_clz(n);
table.resize(log_n, std::vector<value_type>(n));
REP (k, log_n - 1) {
REP (i, n) {
table[k + 1][i] = i + (1ll << k) < n ?
mon.mult(table[k][i], table[k][i + (1ll << k)]) :
table[k][i];
}
}
}
/**
* @note $O(1)$
*/
value_type range_get(int l, int r) const {
if (l == r) return mon.unit(); // if there is no unit, remove this line
assert (0 <= l and l < r and r <= (int)table[0].size());
int k = 31 - __builtin_clz(r - l); // log2
return mon.mult(table[k][l], table[k][r - (1ll << k)]);
}
};
#line 2 "monoids/min.hpp"
#include <algorithm>
#include <limits>
template <class T>
struct min_monoid {
typedef T value_type;
value_type unit() const { return std::numeric_limits<T>::max(); }
value_type mult(value_type a, value_type b) const { return std::min(a, b); }
};
#line 9 "utils/greedily_increasing_subsequence.hpp"
/**
* @brief Length of Greedily Increasing Subsequences ( $O(n \log n)$ + $O(1)$)
* @description computes the lengths of the greedily increasing subsubsequence for the given interval
* @note the greedily increasing subsubsequence for a sequence $a$ means the subsubsequence of the elements $a_i$ which satisfy $\forall j \lt i. a_j
     \lt a_i$.
*/
class greedily_increasing_subsequence {
std::vector<int> depth;
sparse_table<min_monoid<int> > table;
public:
greedily_increasing_subsequence() = default;
int operator () (int l, int r) const {
assert (0 <= l and l <= r and r <= (int)depth.size());
if (l == r) return 0;
return depth[l] - table.range_get(l, r) + 1;
}
private:
greedily_increasing_subsequence(const std::vector<int> & depth_)
: depth(depth_), table(ALL(depth_)) {
}
public:
/**
* @note this is just a constructor, but is needed to specify template arguments.
*/
template <class T, class Comparator = std::less<T>, class RandomAccessIterator>
static greedily_increasing_subsequence construct(RandomAccessIterator first, RandomAccessIterator last, const Comparator & cmp = Comparator()) {
int n = std::distance(first, last);
// make a forest
std::vector<int> parent(n, -1);
std::stack<int> stk;
REP (i, n) {
while (not stk.empty() and cmp(*(first + stk.top()), *(first + i))) {
parent[stk.top()] = i;
stk.pop();
}
stk.push(i);
}
// calculate depths
std::vector<int> depth(n);
REP_R (i, n) {
if (parent[i] != -1) {
depth[i] = depth[parent[i]] + 1;
}
}
return greedily_increasing_subsequence(depth);
}
};
#line 6 "graph/cartesian_tree.yukicoder-1031.test.cpp"
#include <cstdio>
#line 10 "graph/cartesian_tree.yukicoder-1031.test.cpp"
#include <iostream>
using namespace std;
int64_t solve1(int n, const vector<int> & p) {
// prepare a data structure for the sequence
auto f = greedily_increasing_subsequence::construct<int>(ALL(p));
// construct the Cartesian tree
vector<int> parent = construct_cartesian_tree(p);
vector<vector<int> > children; int root; tie(children, root) = children_from_parent(parent);
// fold the Cartesian tree
int64_t ans = 0;
auto go = [&](auto && go, int l, int m, int r) -> void {
if (l == r) {
return;
}
ans += f(m + 1, r);
for (int x : children[m]) {
if (x < m) {
go(go, l, x, m);
} else {
go(go, m + 1, x, r);
}
}
};
go(go, 0, root, n);
return ans;
}
int64_t solve(int n, vector<int> p) {
int64_t ans = solve1(n, p);
reverse(ALL(p));
return ans + solve1(n, p);
}
int main() {
int n; scanf("%d", &n);
vector<int> p(n);
REP (i, n) {
scanf("%d", &p[i]);
}
long long ans = solve(n, p);
printf("%lld\n", ans);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0