結果
問題 | No.1031 いたずら好きなお姉ちゃん |
ユーザー |
|
提出日時 | 2020-07-16 03:24:44 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 127 ms / 3,500 ms |
コード長 | 7,136 bytes |
コンパイル時間 | 1,410 ms |
コンパイル使用メモリ | 112,964 KB |
最終ジャッジ日時 | 2025-01-11 21:22:57 |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 53 |
コンパイルメッセージ
graph/cartesian_tree.yukicoder-1031.test.cpp: In function ‘int main()’: graph/cartesian_tree.yukicoder-1031.test.cpp:48:17: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] graph/cartesian_tree.yukicoder-1031.test.cpp:51:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
ソースコード
#line 1 "graph/cartesian_tree.yukicoder-1031.test.cpp"#define PROBLEM "https://yukicoder.me/problems/no/1031"#line 2 "utils/macros.hpp"#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))#define ALL(x) std::begin(x), std::end(x)#line 2 "graph/cartesian_tree.hpp"#include <functional>#include <vector>#line 5 "graph/cartesian_tree.hpp"/*** @brief Cartesian tree ($O(n)$)* @note the smallest value is the root* @note if a is not distinct, the way for tie-break is undefined* @return the binary tree as the list of parents*/template <class T, class Comparator = std::less<int> >std::vector<int> construct_cartesian_tree(const std::vector<T> & a, const Comparator & cmp = Comparator()) {int n = a.size();std::vector<int> parent(n, -1);REP3 (i, 1, n) {int p = i - 1; // parent of iint l = -1; // left child of iwhile (p != -1 and cmp(a[i], a[p])) {int pp = parent[p]; // parent of parent of iif (l != -1) {parent[l] = p;}parent[p] = i;l = p;p = pp;}parent[i] = p;}return parent;}#line 2 "graph/format.hpp"#include <cassert>#include <utility>#line 6 "graph/format.hpp"std::pair<std::vector<std::vector<int> >, int> children_from_parent(const std::vector<int> & parent) {int n = parent.size();std::vector<std::vector<int> > children(n);int root = -1;REP (x, n) {if (parent[x] == -1) {assert (root == -1);root = x;} else {children[parent[x]].push_back(x);}}assert (root != -1);return std::make_pair(children, root);}std::vector<std::vector<int> > adjacent_list_from_children(const std::vector<std::vector<int> > & children) {int n = children.size();std::vector<std::vector<int> > g(n);REP (x, n) {for (int y : children[x]) {g[x].push_back(y);g[y].push_back(x);}}return g;}#line 2 "utils/greedily_increasing_subsequence.hpp"#include <stack>#include <tuple>#line 5 "data_structure/sparse_table.hpp"/*** @brief Sparse Table (idempotent monoid)* @note the unit is required just for convenience* @note $O(N \log N)$ space*/template <class IdempotentMonoid>struct sparse_table {typedef typename IdempotentMonoid::value_type value_type;std::vector<std::vector<value_type> > table;IdempotentMonoid mon;sparse_table() = default;/*** @note $O(N \log N)$ time*/template <class InputIterator>sparse_table(InputIterator first, InputIterator last, const IdempotentMonoid & mon_ = IdempotentMonoid()): mon(mon_) {table.emplace_back(first, last);int n = table[0].size();int log_n = 32 - __builtin_clz(n);table.resize(log_n, std::vector<value_type>(n));REP (k, log_n - 1) {REP (i, n) {table[k + 1][i] = i + (1ll << k) < n ?mon.mult(table[k][i], table[k][i + (1ll << k)]) :table[k][i];}}}/*** @note $O(1)$*/value_type range_get(int l, int r) const {if (l == r) return mon.unit(); // if there is no unit, remove this lineassert (0 <= l and l < r and r <= (int)table[0].size());int k = 31 - __builtin_clz(r - l); // log2return mon.mult(table[k][l], table[k][r - (1ll << k)]);}};#line 2 "monoids/min.hpp"#include <algorithm>#include <limits>template <class T>struct min_monoid {typedef T value_type;value_type unit() const { return std::numeric_limits<T>::max(); }value_type mult(value_type a, value_type b) const { return std::min(a, b); }};#line 9 "utils/greedily_increasing_subsequence.hpp"/*** @brief Length of Greedily Increasing Subsequences (前処理 $O(n \log n)$ + $O(1)$)* @description computes the lengths of the greedily increasing subsubsequence for the given interval* @note the greedily increasing subsubsequence for a sequence $a$ means the subsubsequence of the elements $a_i$ which satisfy $\forall j \lt i. a_j\lt a_i$.*/class greedily_increasing_subsequence {std::vector<int> depth;sparse_table<min_monoid<int> > table;public:greedily_increasing_subsequence() = default;int operator () (int l, int r) const {assert (0 <= l and l <= r and r <= (int)depth.size());if (l == r) return 0;return depth[l] - table.range_get(l, r) + 1;}private:greedily_increasing_subsequence(const std::vector<int> & depth_): depth(depth_), table(ALL(depth_)) {}public:/*** @note this is just a constructor, but is needed to specify template arguments.*/template <class T, class Comparator = std::less<T>, class RandomAccessIterator>static greedily_increasing_subsequence construct(RandomAccessIterator first, RandomAccessIterator last, const Comparator & cmp = Comparator()) {int n = std::distance(first, last);// make a foreststd::vector<int> parent(n, -1);std::stack<int> stk;REP (i, n) {while (not stk.empty() and cmp(*(first + stk.top()), *(first + i))) {parent[stk.top()] = i;stk.pop();}stk.push(i);}// calculate depthsstd::vector<int> depth(n);REP_R (i, n) {if (parent[i] != -1) {depth[i] = depth[parent[i]] + 1;}}return greedily_increasing_subsequence(depth);}};#line 6 "graph/cartesian_tree.yukicoder-1031.test.cpp"#include <cstdio>#line 10 "graph/cartesian_tree.yukicoder-1031.test.cpp"#include <iostream>using namespace std;int64_t solve1(int n, const vector<int> & p) {// prepare a data structure for the sequenceauto f = greedily_increasing_subsequence::construct<int>(ALL(p));// construct the Cartesian treevector<int> parent = construct_cartesian_tree(p);vector<vector<int> > children; int root; tie(children, root) = children_from_parent(parent);// fold the Cartesian treeint64_t ans = 0;auto go = [&](auto && go, int l, int m, int r) -> void {if (l == r) {return;}ans += f(m + 1, r);for (int x : children[m]) {if (x < m) {go(go, l, x, m);} else {go(go, m + 1, x, r);}}};go(go, 0, root, n);return ans;}int64_t solve(int n, vector<int> p) {int64_t ans = solve1(n, p);reverse(ALL(p));return ans + solve1(n, p);}int main() {int n; scanf("%d", &n);vector<int> p(n);REP (i, n) {scanf("%d", &p[i]);}long long ans = solve(n, p);printf("%lld\n", ans);return 0;}