結果
| 問題 |
No.1080 Strange Squared Score Sum
|
| コンテスト | |
| ユーザー |
chaemon
|
| 提出日時 | 2020-07-16 23:48:24 |
| 言語 | Nim (2.2.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 23,415 bytes |
| コンパイル時間 | 5,569 ms |
| コンパイル使用メモリ | 86,144 KB |
| 実行使用メモリ | 48,384 KB |
| 最終ジャッジ日時 | 2024-11-25 22:06:07 |
| 合計ジャッジ時間 | 70,252 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 14 TLE * 6 |
ソースコード
#{{{ header
{.hints:off warnings:off optimization:speed.}
import algorithm, sequtils, tables, macros, math, sets, strutils, strformat, sugar
when defined(MYDEBUG):
import header
import streams
proc scanf(formatstr: cstring){.header: "<stdio.h>", varargs.}
#proc getchar(): char {.header: "<stdio.h>", varargs.}
proc nextInt(): int = scanf("%lld",addr result)
proc nextFloat(): float = scanf("%lf",addr result)
proc nextString[F](f:F): string =
var get = false
result = ""
while true:
# let c = getchar()
let c = f.readChar
if c.int > ' '.int:
get = true
result.add(c)
elif get: return
proc nextInt[F](f:F): int = parseInt(f.nextString)
proc nextFloat[F](f:F): float = parseFloat(f.nextString)
proc nextString():string = stdin.nextString()
template `max=`*(x,y:typed):void = x = max(x,y)
template `min=`*(x,y:typed):void = x = min(x,y)
template inf(T): untyped =
when T is SomeFloat: T(Inf)
elif T is SomeInteger: ((T(1) shl T(sizeof(T)*8-2)) - (T(1) shl T(sizeof(T)*4-1)))
else: assert(false)
proc discardableId[T](x: T): T {.discardable.} =
return x
macro `:=`(x, y: untyped): untyped =
var strBody = ""
if x.kind == nnkPar:
for i,xi in x:
strBody &= fmt"""
{xi.repr} := {y[i].repr}
"""
else:
strBody &= fmt"""
when declaredInScope({x.repr}):
{x.repr} = {y.repr}
else:
var {x.repr} = {y.repr}
"""
strBody &= fmt"discardableId({x.repr})"
parseStmt(strBody)
proc toStr[T](v:T):string =
proc `$`[T](v:seq[T]):string =
v.mapIt($it).join(" ")
return $v
proc print0(x: varargs[string, toStr]; sep:string):string{.discardable.} =
result = ""
for i,v in x:
if i != 0: addSep(result, sep = sep)
add(result, v)
result.add("\n")
stdout.write result
var print:proc(x: varargs[string, toStr])
print = proc(x: varargs[string, toStr]) =
discard print0(@x, sep = " ")
template makeSeq(x:int; init):auto =
when init is typedesc: newSeq[init](x)
else: newSeqWith(x, init)
macro Seq(lens: varargs[int]; init):untyped =
var a = fmt"{init.repr}"
for i in countdown(lens.len - 1, 0): a = fmt"makeSeq({lens[i].repr}, {a})"
parseStmt(a)
template makeArray(x; init):auto =
when init is typedesc:
var v:array[x, init]
else:
var v:array[x, init.type]
for a in v.mitems: a = init
v
macro Array(lens: varargs[typed], init):untyped =
var a = fmt"{init.repr}"
for i in countdown(lens.len - 1, 0):
a = fmt"makeArray({lens[i].repr}, {a})"
parseStmt(a)
# }}}
const Mod = 10^9 + 9
#const Mod = 998244353
# ModInt {{{
# ModInt[Mod] {{{
type ModInt[Mod: static[int]] = object
v:int32
proc initModInt(a:SomeInteger, Mod:static[int]):ModInt[Mod] =
var a = a.int
a = a mod Mod
if a < 0: a += Mod
result.v = a.int32
proc getMod[Mod:static[int]](self: ModInt[Mod]):static int32 = self.Mod
proc getMod[Mod:static[int]](self: typedesc[ModInt[Mod]]):static int32 = self.Mod
macro declareModInt(Mod:static[int], t: untyped):untyped =
var strBody = ""
strBody &= fmt"""
type {t.repr} = ModInt[{Mod.repr}]
converter to{t.repr}(a:SomeInteger):{t.repr} = initModInt(a, {Mod.repr})
proc init{t.repr}(a:SomeInteger):{t.repr} = initModInt(a, {Mod.repr})
proc `$`(a:{t.repr}):string = $(a.v)
"""
parseStmt(strBody)
when declared(Mod): declareModInt(Mod, Mint)
##}}}
# DynamicModInt {{{
type DMint = object
v:int32
proc setModSub(self:typedesc[not ModInt], m:int = -1, update = false):int32 =
{.noSideEffect.}:
var DMOD {.global.}:int32
if update: DMOD = m.int32
return DMOD
proc fastMod(a:int,m:uint32):uint32{.inline.} =
var
minus = false
a = a
if a < 0:
minus = true
a = -a
elif a < m.int:
return a.uint32
var
xh = (a shr 32).uint32
xl = a.uint32
d:uint32
asm """
"divl %4; \n\t"
: "=a" (`d`), "=d" (`result`)
: "d" (`xh`), "a" (`xl`), "r" (`m`)
"""
if minus and result > 0'u32: result = m - result
proc initDMint(a:SomeInteger, Mod:int):DMint = result.v = fastMod(a.int, Mod.uint32).int32
proc getMod[T:not ModInt](self: T):int32 = T.type.setModSub()
proc getMod(self: typedesc[not ModInt]):int32 = self.setModSub()
proc setMod(self: typedesc[not ModInt], m:int) = discard self.setModSub(m, update = true)
#}}}
# Operations {{{
type ModIntC = concept x, type T
x.v
x.v is int32
x.getMod() is int32
when T isnot ModInt: setMod(T, int)
type SomeIntC = concept x
x is SomeInteger or x is ModIntC
proc Identity(self:ModIntC):auto = result = self;result.v = 1
proc init[Mod:static[int]](self:ModInt[Mod], a:SomeIntC):ModInt[Mod] =
when a is SomeInteger: initModInt(a, Mod)
else: a
proc init(self:ModIntC and not ModInt, a:SomeIntC):auto =
when a is SomeInteger:
var r = self.type.default
r.v = fastMod(a.int, self.getMod().uint32).int32
r
else: a
macro declareDMintConverter(t:untyped) =
parseStmt(fmt"""
converter to{t.repr}(a:SomeInteger):{t.repr} =
let Mod = {t.repr}.getMod()
if Mod > 0:
result.v = fastMod(a.int, Mod.uint32).int32
else:
result.v = a.int32
return result
""")
declareDMintConverter(DMint)
macro declareDMint(t:untyped) =
parseStmt(fmt"""
type {t.repr} {{.borrow: `.`.}} = distinct DMint
declareDMintConverter({t.repr})
""")
proc `*=`(self:var ModIntC, a:SomeIntC) =
when self is ModInt:
self.v = (self.v.int * self.init(a).v.int mod self.getMod().int).int32
else:
self.v = fastMod(self.v.int * self.init(a).v.int, self.getMod().uint32).int32
proc `==`(a:ModIntC, b:SomeIntC):bool = a.v == a.init(b).v
proc `!=`(a:ModIntC, b:SomeIntC):bool = a.v != a.init(b).v
proc `-`(self:ModIntC):auto =
if self.v == 0: return self
else: return self.init(self.getMod() - self.v)
proc `$`(a:ModIntC):string = return $(a.v)
proc `+=`(self:var ModIntC; a:SomeIntC) =
self.v += self.init(a).v
if self.v >= self.getMod(): self.v -= self.getMod()
proc `-=`(self:var ModIntC, a:SomeIntC) =
self.v -= self.init(a).v
if self.v < 0: self.v += self.getMod()
proc `^=`(self:var ModIntC, n:SomeInteger) =
var (x,n,a) = (self,n,self.Identity)
while n > 0:
if (n and 1) > 0: a *= x
x *= x
n = (n shr 1)
swap(self, a)
proc inverse(self: ModIntC):auto =
var
a = self.v.int
b = self.getMod().int
u = 1
v = 0
while b > 0:
let t = a div b
a -= t * b;swap(a, b)
u -= t * v;swap(u, v)
return self.init(u)
proc `/=`(a:var ModIntC,b:SomeIntC) = a *= a.init(b).inverse()
proc `+`(a:ModIntC,b:SomeIntC):auto = result = a;result += b
proc `-`(a:ModIntC,b:SomeIntC):auto = result = a;result -= b
proc `*`(a:ModIntC,b:SomeIntC):auto = result = a;result *= b
proc `/`(a:ModIntC,b:SomeIntC):auto = result = a;result /= b
proc `^`(a:ModIntC,b:SomeInteger):auto = result = a;result ^= b
# }}}
# }}}
# number_theoretic_transform {{{
import sequtils, algorithm, bitops
type NumberTheoreticTransform[ModInt] = object
rev: seq[int]
rts: seq[ModInt]
base, max_base:int
root: ModInt
proc initNumberTheoreticTransform[ModInt](root0 = -1):NumberTheoreticTransform[ModInt] =
let Mod = ModInt.getMod()
result = NumberTheoreticTransform[ModInt](base:1, rev: @[0, 1], rts: @[ModInt(0), ModInt(1)])
assert(Mod >= 3 and Mod mod 2 == 1)
var tmp = Mod - 1
var max_base = 0
while tmp mod 2 == 0: tmp = tmp shr 1; max_base+=1
var root:ModInt
if root0 == -1:
root = ModInt(2)
while root^((Mod - 1) shr 1) == 1: root += 1
else:
root = ModInt(root0)
assert(root^(Mod - 1) == 1)
root = root^((Mod - 1) shr max_base)
result.max_base = max_base
result.root = root
proc init[ModInt](self: typedesc[NumberTheoreticTransform[ModInt]]):auto = initNumberTheoreticTransform[ModInt]()
proc ensureBase[ModInt](self: var NumberTheoreticTransform[ModInt];nbase:int) =
if nbase <= self.base: return
self.rev.setLen(1 shl nbase)
self.rts.setLen(1 shl nbase)
for i in 0..<(1 shl nbase):
self.rev[i] = (self.rev[i shr 1] shr 1) + ((i and 1) shl (nbase - 1))
assert(nbase <= self.max_base)
while self.base < nbase:
let z = self.root^(1 shl (self.max_base - 1 - self.base))
for i in 1 shl (self.base - 1) ..< 1 shl self.base:
self.rts[i shl 1] = self.rts[i]
self.rts[(i shl 1) + 1] = self.rts[i] * z
self.base += 1
proc fft[ModInt](self: var NumberTheoreticTransform[ModInt];a:seq[ModInt]):auto =
var a = a
let n = a.len
assert((n and (n - 1)) == 0)
let zeros = countTrailingZeroBits(n)
self.ensureBase(zeros)
let shift = self.base - zeros
for i in 0..<n:
let j = self.rev[i] shr shift
if i < j:
swap(a[i], a[j])
var k = 1
while k < n:
var i = 0
while i < n:
for j in 0..<k:
let z = a[i + j + k] * self.rts[j + k]
a[i + j + k] = a[i + j] - z
a[i + j] = a[i + j] + z
i += 2 * k
k = k shl 1
return a
proc ifft[ModInt](self: var NumberTheoreticTransform[ModInt];a:seq[ModInt]):auto =
var a = a
let n = a.len
a = self.fft(a)
a.reverse(1, a.len - 1)
let inv_sz = ModInt(1) / ModInt(n)
for i in 0..<n: a[i] *= inv_sz
return a
proc dot[ModInt](self: NumberTheoreticTransform[ModInt], a,b: seq[ModInt]):seq[ModInt] =
result = newSeq[ModInt](a.len)
for i in 0..<a.len: result[i] = a[i] * b[i]
proc multiply[ModInt](self: var NumberTheoreticTransform[ModInt];a,b: seq[ModInt]):seq[ModInt] =
var (a,b) = (a,b)
let need = a.len + b.len - 1
var nbase = 1
while (1 shl nbase) < need: nbase += 1
self.ensureBase(nbase)
let sz = 1 shl nbase
while a.len < sz: a.add(ModInt(0))
while b.len < sz: b.add(ModInt(0))
a.setLen(sz)
b.setLen(sz)
a = self.ifft(self.dot(self.fft(a), self.fft(b)))
while a.len < need: a.add(ModInt(0))
a.setLen(need)
return a
#}}}
# garner {{{
proc garner[int](v:seq[tuple[a,p:int]], Mod:int):int =
let sz = v.len
var
kp = newSeqWith(sz + 1, 0)
rmult = newSeqWith(sz + 1, 1)
var v = v
v.add((0, Mod))
for i in 0..<sz:
DMint.setMod(v[i].p)
var x = (DMint(v[i].a - kp[i]) * DMint(rmult[i]).inverse()).v
for j in i+1..sz:
DMint.setMod(v[j].p)
kp[j] = (DMint(kp[j]) + DMint(rmult[j]) * x).v
rmult[j] = (DMint(rmult[j]) * v[i].p).v
return kp[sz]
# }}}
# ArbitraryModConvolution by NumberTheoricTransform {{{
declareDMint(DMintLocal)
type ArbitraryModConvolutionNTT[ModInt] = object
ps:array[3, (int,int)]
ntt:array[3, NumberTheoreticTransform[DMintLocal]]
# remainder, primitive_root
# (924844033, 5)
# (998244353, 3)
# (1012924417, 5)
# (167772161, 3)
# (469762049, 3)
# (1224736769, 3)
proc init[ModInt](self:typedesc[ArbitraryModConvolutionNTT[ModInt]]):ArbitraryModConvolutionNTT[ModInt] =
result = ArbitraryModConvolutionNTT[ModInt]()
result.ps= [(924844033, 5), (998244353, 3), (1012924417, 5)]
for i,(p,r) in result.ps:
DMintLocal.setMod(p)
result.ntt[i] = initNumberTheoreticTransform[DMintLocal](r)
proc fft[ModInt](self: var ArbitraryModConvolutionNTT[ModInt], a:seq[ModInt]):array[3, seq[DMintLocal]] =
for i,(p,r) in self.ps:
DMintLocal.setMod(p)
result[i] = self.ntt[i].fft(a.mapIt(DMintLocal(it.v)))
proc dot[ModInt](self: ArbitraryModConvolutionNTT[ModInt], a, b:array[3, seq[DMintLocal]]):array[3, seq[DMintLocal]] =
for i,(p,r) in self.ps:
DMintLocal.setMod(p)
result[i] = self.ntt[i].dot(a[i],b[i])
proc ifft[ModInt](self: var ArbitraryModConvolutionNTT[ModInt], a:array[3, seq[DMintLocal]]):seq[ModInt] =
let
n = a[0].len
p0 = ModInt.getMod()
var a = a
for j,(p, r) in self.ps:
DMintLocal.setMod(p)
a[j] = self.ntt[j].ifft(a[j])
result = newSeq[ModInt]()
for i in 0..<n:
var x = newSeq[(int,int)]()
for j,(p, r) in self.ps:
x.add((a[j][i].v.int, p))
result.add(garner(x, p0))
proc ensureBase[ModInt](self: var ArbitraryModConvolutionNTT[ModInt], nbase:int) =
for i,(p,r) in self.ps:
DMintLocal.setMod(p)
self.ntt[i].ensureBase(nbase)
proc multiply[ModInt](self:var ArbitraryModConvolutionNTT[ModInt], a,b:seq[ModInt]):seq[ModInt] =
let need = a.len + b.len - 1
var nbase = 1
while (1 shl nbase) < need: nbase += 1
self.ensureBase(nbase)
let sz = 1 shl nbase
var (a, b) = (a, b)
a.setLen(sz)
b.setLen(sz)
result = self.ifft(self.dot(self.fft(a), self.fft(b)))
result.setLen(need)
# }}}
const ArbitraryMod = true
const FastMod = true
const UseFFT = true
# FormalPowerSeries {{{
type FieldElem = concept x, type T
x + x
x - x
x * x
x / x
type FormalPowerSeries[T:FieldElem] = seq[T]
when not declared(FastMult):
const FastMult = true
when not declared(UseFFT):
const UseFFT = true
when not declared(ArbitraryMod):
const ArbitraryMod = false
when UseFFT or FastMult:
when ArbitraryMod:
when declared(ArbitraryModConvolutionNTT):
type BaseFFT[T] = ArbitraryModConvolutionNTT[T]
elif declared(ArbitraryModConvolution):
type BaseFFT[T] = ArbitraryModConvolution[T]
else:
assert(false)
else:
when declared(NumberTheoreticTransform):
type BaseFFT[T] = NumberTheoreticTransform[T]
else:
assert(false)
proc getFFT[T](self:FormalPowerSeries[T]):ptr BaseFFT[T] =
var fft {.global.} = BaseFFT[T].init()
return fft.addr
import sugar, sequtils, strformat
proc initFormalPowerSeries[T:FieldElem](n:int):auto = FormalPowerSeries[T](newSeq[T](n))
template initFormalPowerSeries[T](data: openArray[typed]):FormalPowerSeries[T] = data.mapIt(T(it))
proc `$`[T](self:FormalPowerSeries[T]):string = return self.mapIt($it).join(" ")
macro revise(a, b) =
parseStmt(fmt"""let {a.repr} = if {a.repr} == -1: {b.repr} else: {a.repr}""")
#{{{ sqrt
type
SQRT[T] = proc(t:T):T
proc sqrtSub[T](self:FormalPowerSeries[T], update: bool, f:SQRT[T]):(bool, SQRT[T]){.discardable.} =
var is_set{.global.} = false
var sqr{.global.}:SQRT[T] = nil
if update:
is_set = true
sqr = f
return (is_set, sqr)
proc isSetSqrt[T](self:FormalPowerSeries[T]):bool = return self.sqrtSub(false, nil)[0]
proc setSqrt[T](self:FormalPowerSeries[T], f: SQRT[T]):SQRT[T]{.discardable.} = return self.sqrtSub(true, f)[1]
proc getSqrt[T](self:FormalPowerSeries[T]):SQRT[T]{.discardable.} = return self.sqrtSub(false, nil)[1]
#}}}
proc shrink[T](self: var FormalPowerSeries[T]) =
while self.len > 0 and self[^1] == 0: discard self.pop()
#{{{ operators +=, -=, *=, mod=, -, /=
proc `+=`(self: var FormalPowerSeries, r:FormalPowerSeries) =
if r.len > self.len: self.setlen(r.len)
for i in 0..<r.len: self[i] += r[i]
proc `+=`[T](self: var FormalPowerSeries[T], r:T) =
if self.len == 0: self.setlen(1)
self[0] += r
proc `-=`[T](self: var FormalPowerSeries[T], r:FormalPowerSeries[T]) =
if r.len > self.len: self.setlen(r.len)
for i in 0..<r.len: self[i] -= r[i]
self.shrink()
proc `-=`[T](self: var FormalPowerSeries[T], r:T) =
if self.len == 0: self.setlen(1)
self[0] -= r
self.shrink()
proc `*=`[T](self: var FormalPowerSeries[T], v:T) = self.applyIt(it * v)
proc `*=`[T](self: var FormalPowerSeries[T], r: FormalPowerSeries[T]) =
if self.len == 0 or r.len == 0:
self.setlen(0)
else:
when FastMult:
var fft = self.getFFT()
self = fft[].multiply(self, r)
else:
var c = initFormalPowerSeries[T](self.len + r.len - 1)
for i in 0..<self.len:
for j in 0..<r.len:
c[i + j] += self[i] + r[j]
self.swap(c)
proc `mod=`[T](self: var FormalPowerSeries[T], r:FormalPowerSeries[T]) = self -= self div r * r
proc `-`[T](self: FormalPowerSeries[T]):FormalPowerSeries[T] =
var ret = self
ret.applyIt(-it)
return ret
proc `/=`[T](self: var FormalPowerSeries[T], v:T) = self.applyIt(it / v)
#}}}
proc rev[T](self: FormalPowerSeries[T], deg = -1):auto =
var ret = self
if deg != -1: ret.setlen(deg)
ret.reverse
return ret
proc pre[T](self: FormalPowerSeries[T], sz:int):auto =
result = self
result.setlen(min(self.len, sz))
proc `div=`[T](self: var FormalPowerSeries[T], r: FormalPowerSeries[T]) =
if self.len < r.len:
self.setlen(0)
else:
let n = self.len - r.len + 1
self = (self.rev().pre(n) * r.rev().inv(n)).pre(n).rev(n)
proc dot[T](self:FormalPowerSeries[T], r: FormalPowerSeries[T]):auto =
var ret = initFormalPowerSeries[T](min(self.len, r.len))
for i in 0..<ret.len: ret[i] = self[i] * r[i]
return ret
proc `shr`[T](self: FormalPowerSeries[T], sz:int):auto =
if self.len <= sz: return initFormalPowerSeries[T](0)
result = self
if sz >= 1: result.delete(0, sz - 1)
proc `shl`[T](self: FormalPowerSeries[T], sz:int):auto =
result = initFormalPowerSeries[T](sz)
result = result & self
proc diff[T](self: FormalPowerSeries[T]):auto =
let n = self.len
result = initFormalPowerSeries[T](max(0, n - 1))
for i in 1..<n:
result[i - 1] = self[i] * T(i)
proc integral[T](self: FormalPowerSeries[T]):auto =
let n = self.len
result = initFormalPowerSeries[T](n + 1)
result[0] = T(0)
for i in 0..<n: result[i + 1] = self[i] / T(i + 1)
# F(0) must not be 0
proc inv[T](self: FormalPowerSeries[T], deg = -1):auto =
doAssert(self[0] != 0)
deg.revise(self.len)
when UseFFT:
proc invFast[T](self: FormalPowerSeries[T]):auto =
doAssert(self[0] != 0)
let n = self.len
var res = initFormalPowerSeries[T](1)
res[0] = T(1) / self[0]
var fft = self.getFFT()
var d = 1
while d < n:
var f, g = initFormalPowerSeries[T](2 * d)
for j in 0..<min(n, 2 * d): f[j] = self[j]
for j in 0..<d: g[j] = res[j]
let g1 = fft[].fft(g)
f = fft[].ifft(fft[].dot(fft[].fft(f), g1))
for j in 0..<d:
f[j] = T(0)
f[j + d] = -f[j + d]
f = fft[].ifft(fft[].dot(fft[].fft(f), g1))
f[0..<d] = res[0..<d]
res = f
d = d shl 1
return res.pre(n)
var ret = self
ret.setlen(deg)
return ret.invFast()
else:
var ret = initFormalPowerSeries[T](1)
ret[0] = T(1) / self[0]
var i = 1
while i < deg:
ret = (ret + ret - ret * ret * self.pre(i shl 1)).pre(i shl 1)
i = i shl 1
return ret.pre(deg)
# F(0) must be 1
proc log[T](self:FormalPowerSeries[T], deg = -1):auto =
doAssert self[0] == T(1)
deg.revise(self.len)
return (self.diff() * self.inv(deg)).pre(deg - 1).integral()
proc sqrt[T](self: FormalPowerSeries[T], deg = -1):auto =
let n = self.len
deg.revise(n)
if self[0] == 0:
for i in 1..<n:
if self[i] != 0:
if (i and 1) > 0: return initFormalPowerSeries[T](0)
if deg - i div 2 <= 0: break
result = (self shr i).sqrt(deg - i div 2)
if result.len == 0: return initFormalPowerSeries[T](0)
result = result shl (i div 2)
if result.len < deg: result.setlen(deg)
return
return initFormalPowerSeries[T](deg)
var ret:FormalPowerSeries[T]
if self.isSetSqrt:
let sqr = self.getSqrt()(self[0])
if sqr * sqr != self[0]: return initFormalPowerSeries[T](0)
ret = initFormalPowerSeries[T](@[T(sqr)])
else:
doAssert(self[0] == 1)
ret = initFormalPowerSeries[T](@[T(1)])
let inv2 = T(1) / T(2);
var i = 1
while i < deg:
ret = (ret + self.pre(i shl 1) * ret.inv(i shl 1)) * inv2
i = i shl 1
return ret.pre(deg)
import typetraits
# F(0) must be 0
proc exp[T](self: FormalPowerSeries[T], deg = -1):auto =
doAssert self[0] == 0
deg.revise(self.len)
when UseFFT:
var fft = self.getFFT()
proc onlineConvolutionExp[T](self, conv_coeff:FormalPowerSeries[T]):auto =
let n = conv_coeff.len
doAssert((n and (n - 1)) == 0)
type FFTType = fft[].fft(initFormalPowerSeries[T](0)).type
var
conv_ntt_coeff = newSeq[FFTType]()
i = n
while (i shr 1) > 0:
var g = conv_coeff.pre(i)
conv_ntt_coeff.add(fft[].fft(g))
i = i shr 1
var conv_arg, conv_ret = initFormalPowerSeries[T](n)
proc rec(l,r,d:int) =
if r - l <= 16:
for i in l..<r:
var sum = T(0)
for j in l..<i: sum += conv_arg[j] * conv_coeff[i - j]
conv_ret[i] += sum
conv_arg[i] = if i == 0: T(1) else: conv_ret[i] / i
else:
var m = (l + r) div 2
rec(l, m, d + 1)
var pre = initFormalPowerSeries[T](r - l)
pre[0..<m-l] = conv_arg[l..<m]
pre = fft[].ifft(fft[].dot(fft[].fft(pre), conv_ntt_coeff[d]))
for i in 0..<r - m: conv_ret[m + i] += pre[m + i - l]
rec(m, r, d + 1)
rec(0, n, 0)
return conv_arg
proc expRec[T](self: FormalPowerSeries[T]):auto =
doAssert self[0] == 0
let n = self.len
var m = 1
while m < n: m *= 2
var conv_coeff = initFormalPowerSeries[T](m)
for i in 1..<n: conv_coeff[i] = self[i] * i
return self.onlineConvolutionExp(conv_coeff).pre(n)
var ret = self
ret.setlen(deg)
return ret.expRec()
else:
var
ret = initFormalPowerSeries[T](@[T(1)])
i = 1
while i < deg:
ret = (ret * (self.pre(i shl 1) + T(1) - ret.log(i shl 1))).pre(i shl 1);
i = i shl 1
return ret.pre(deg)
proc pow[T](self: FormalPowerSeries[T], k:int, deg = -1):auto =
var self = self
let n = self.len
deg.revise(n)
self.setLen(deg)
for i in 0..<n:
if self[i] != T(0):
let rev = T(1) / self[i]
result = (((self * rev) shr i).log(deg) * T(k)).exp() * (self[i]^k)
if i * k > deg: return initFormalPowerSeries[T](deg)
result = (result shl (i * k)).pre(deg)
if result.len < deg: result.setlen(deg)
return
return self
proc eval[T](self: FormalPowerSeries[T], x:T):T =
var
r = T(0)
w = T(1)
for v in self:
r += w * v
w *= x
return r
proc powMod[T](self: FormalPowerSeries[T], n:int, M:FormalPowerSeries[T]):auto =
let modinv = M.rev().inv()
proc getDiv(base:FormalPowerSeries[T]):FormalPowerSeries[T] =
var base = base
if base.len < M.len:
base.setlen(0)
return base
let n = base.len - M.len + 1
return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n)
var
n = n
x = self
ret = initFormalPowerSeries[T](@[T(1)])
while n > 0:
if (n and 1) > 0:
ret *= x
ret -= getDiv(ret) * M
x *= x
x -= getDiv(x) * M
n = n shr 1
return ret
# operators +, -, *, div, mod {{{
macro declareOp(op) = fmt"""proc `{op}`[T](self:FormalPowerSeries[T];r:FormalPowerSeries[T] or T):FormalPowerSeries[T] = result = self;result {op}= r""".parseStmt
declareOp(`+`);declareOp(`-`);declareOp(`*`);declareOp(`/`)
proc `div`[T](self, r:FormalPowerSeries[T]):FormalPowerSeries[T] = result = self;result.`div=` (r)
proc `mod`[T](self, r:FormalPowerSeries[T]):FormalPowerSeries[T] = result = self;result.`mod=` (r)
# }}}
# }}}
# modSqrt {{{
proc modSqrt[ModInt](a:ModInt):ModInt =
let p = a.getMod()
if a == 0: return 0
if p == 2: return a
if a ^ ((p - 1) shr 1) != 1: return -1
var b = ModInt(1)
while b ^ ((p - 1) shr 1) == 1: b += 1
var
e = 0
m = p - 1
while m mod 2 == 0: m = m shr 1; e.inc
var
x = a ^ ((m - 1) shr 1) * a
y = a * x * x
z = b ^ m
while y != 1:
var
j = 0
t = y
while t != 1: j.inc; t *= t
z = z ^ (1 shl (e - j - 1))
x *= z;z *= z;y *= z
e = j
return x
#}}}
let N = nextInt()
let im = modSqrt(Mint(-1))
var
f = Mint(1)
P = initFormalPowerSeries[Mint](N + 1)
for i in 1..N:
f *= Mint(i)
P[i] = Mint(i + 1)^2
let e1 = exp(P * im)
let e2 = exp(P * (-im))
let sinP = (e1 - e2) / (Mint(im) * 2)
let cosP = (e1 + e2) / Mint(2)
let ans = (sinP + cosP) * f
for i,a in ans:
if i > 0:
echo a
chaemon