結果

問題 No.1080 Strange Squared Score Sum
ユーザー chaemonchaemon
提出日時 2020-07-16 23:48:24
言語 Nim
(2.2.0)
結果
TLE  
実行時間 -
コード長 23,415 bytes
コンパイル時間 5,569 ms
コンパイル使用メモリ 86,144 KB
実行使用メモリ 48,384 KB
最終ジャッジ日時 2024-11-25 22:06:07
合計ジャッジ時間 70,252 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
35,840 KB
testcase_01 AC 2 ms
35,328 KB
testcase_02 AC 2,920 ms
48,384 KB
testcase_03 TLE -
testcase_04 AC 1,453 ms
40,704 KB
testcase_05 AC 1,306 ms
10,112 KB
testcase_06 AC 252 ms
5,248 KB
testcase_07 AC 584 ms
6,784 KB
testcase_08 AC 2,894 ms
17,920 KB
testcase_09 AC 2,894 ms
16,640 KB
testcase_10 AC 268 ms
5,248 KB
testcase_11 TLE -
testcase_12 AC 2,898 ms
16,768 KB
testcase_13 TLE -
testcase_14 AC 2,993 ms
16,896 KB
testcase_15 AC 2 ms
5,248 KB
testcase_16 TLE -
testcase_17 AC 2,952 ms
17,024 KB
testcase_18 AC 2,954 ms
17,024 KB
testcase_19 AC 3,022 ms
17,152 KB
testcase_20 TLE -
testcase_21 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#{{{ header
{.hints:off warnings:off optimization:speed.}
import algorithm, sequtils, tables, macros, math, sets, strutils, strformat, sugar
when defined(MYDEBUG):
  import header

import streams
proc scanf(formatstr: cstring){.header: "<stdio.h>", varargs.}
#proc getchar(): char {.header: "<stdio.h>", varargs.}
proc nextInt(): int = scanf("%lld",addr result)
proc nextFloat(): float = scanf("%lf",addr result)
proc nextString[F](f:F): string =
  var get = false
  result = ""
  while true:
#    let c = getchar()
    let c = f.readChar
    if c.int > ' '.int:
      get = true
      result.add(c)
    elif get: return
proc nextInt[F](f:F): int = parseInt(f.nextString)
proc nextFloat[F](f:F): float = parseFloat(f.nextString)
proc nextString():string = stdin.nextString()

template `max=`*(x,y:typed):void = x = max(x,y)
template `min=`*(x,y:typed):void = x = min(x,y)
template inf(T): untyped = 
  when T is SomeFloat: T(Inf)
  elif T is SomeInteger: ((T(1) shl T(sizeof(T)*8-2)) - (T(1) shl T(sizeof(T)*4-1)))
  else: assert(false)

proc discardableId[T](x: T): T {.discardable.} =
  return x
macro `:=`(x, y: untyped): untyped =
  var strBody = ""
  if x.kind == nnkPar:
    for i,xi in x:
      strBody &= fmt"""
{xi.repr} := {y[i].repr}
"""
  else:
    strBody &= fmt"""
when declaredInScope({x.repr}):
  {x.repr} = {y.repr}
else:
  var {x.repr} = {y.repr}
"""
  strBody &= fmt"discardableId({x.repr})"
  parseStmt(strBody)


proc toStr[T](v:T):string =
  proc `$`[T](v:seq[T]):string =
    v.mapIt($it).join(" ")
  return $v

proc print0(x: varargs[string, toStr]; sep:string):string{.discardable.} =
  result = ""
  for i,v in x:
    if i != 0: addSep(result, sep = sep)
    add(result, v)
  result.add("\n")
  stdout.write result

var print:proc(x: varargs[string, toStr])
print = proc(x: varargs[string, toStr]) =
  discard print0(@x, sep = " ")

template makeSeq(x:int; init):auto =
  when init is typedesc: newSeq[init](x)
  else: newSeqWith(x, init)

macro Seq(lens: varargs[int]; init):untyped =
  var a = fmt"{init.repr}"
  for i in countdown(lens.len - 1, 0): a = fmt"makeSeq({lens[i].repr}, {a})"
  parseStmt(a)

template makeArray(x; init):auto =
  when init is typedesc:
    var v:array[x, init]
  else:
    var v:array[x, init.type]
    for a in v.mitems: a = init
  v

macro Array(lens: varargs[typed], init):untyped =
  var a = fmt"{init.repr}"
  for i in countdown(lens.len - 1, 0):
    a = fmt"makeArray({lens[i].repr}, {a})"
  parseStmt(a)
# }}}

const Mod = 10^9 + 9
#const Mod = 998244353

# ModInt {{{
# ModInt[Mod] {{{
type ModInt[Mod: static[int]] = object
  v:int32

proc initModInt(a:SomeInteger, Mod:static[int]):ModInt[Mod] =
  var a = a.int
  a = a mod Mod
  if a < 0: a += Mod
  result.v = a.int32

proc getMod[Mod:static[int]](self: ModInt[Mod]):static int32 = self.Mod
proc getMod[Mod:static[int]](self: typedesc[ModInt[Mod]]):static int32 = self.Mod

macro declareModInt(Mod:static[int], t: untyped):untyped =
  var strBody = ""
  strBody &= fmt"""
type {t.repr} = ModInt[{Mod.repr}]
converter to{t.repr}(a:SomeInteger):{t.repr} = initModInt(a, {Mod.repr})
proc init{t.repr}(a:SomeInteger):{t.repr} = initModInt(a, {Mod.repr})
proc `$`(a:{t.repr}):string = $(a.v)
"""
  parseStmt(strBody)

when declared(Mod): declareModInt(Mod, Mint)
##}}}

# DynamicModInt {{{
type DMint = object
  v:int32

proc setModSub(self:typedesc[not ModInt], m:int = -1, update = false):int32 =
  {.noSideEffect.}:
    var DMOD {.global.}:int32
    if update: DMOD = m.int32
    return DMOD

proc fastMod(a:int,m:uint32):uint32{.inline.} =
  var
    minus = false
    a = a
  if a < 0:
    minus = true
    a = -a
  elif a < m.int:
    return a.uint32
  var
    xh = (a shr 32).uint32
    xl = a.uint32
    d:uint32
  asm """
    "divl %4; \n\t"
    : "=a" (`d`), "=d" (`result`)
    : "d" (`xh`), "a" (`xl`), "r" (`m`)
  """
  if minus and result > 0'u32: result = m - result
proc initDMint(a:SomeInteger, Mod:int):DMint = result.v = fastMod(a.int, Mod.uint32).int32

proc getMod[T:not ModInt](self: T):int32 = T.type.setModSub()
proc getMod(self: typedesc[not ModInt]):int32 = self.setModSub()
proc setMod(self: typedesc[not ModInt], m:int) = discard self.setModSub(m, update = true)
#}}}

# Operations {{{
type ModIntC = concept x, type T
  x.v
  x.v is int32
  x.getMod() is int32
  when T isnot ModInt: setMod(T, int)
type SomeIntC = concept x
  x is SomeInteger or x is ModIntC

proc Identity(self:ModIntC):auto = result = self;result.v = 1
proc init[Mod:static[int]](self:ModInt[Mod], a:SomeIntC):ModInt[Mod] =
  when a is SomeInteger: initModInt(a, Mod)
  else: a
proc init(self:ModIntC and not ModInt, a:SomeIntC):auto =
  when a is SomeInteger:
    var r = self.type.default
    r.v = fastMod(a.int, self.getMod().uint32).int32
    r
  else: a

macro declareDMintConverter(t:untyped) =
  parseStmt(fmt"""
converter to{t.repr}(a:SomeInteger):{t.repr} =
  let Mod = {t.repr}.getMod()
  if Mod > 0:
    result.v = fastMod(a.int, Mod.uint32).int32
  else:
    result.v = a.int32
  return result
""")

declareDMintConverter(DMint)

macro declareDMint(t:untyped) =
  parseStmt(fmt"""
type {t.repr} {{.borrow: `.`.}} = distinct DMint
declareDMintConverter({t.repr})
""")

proc `*=`(self:var ModIntC, a:SomeIntC) =
  when self is ModInt:
    self.v = (self.v.int * self.init(a).v.int mod self.getMod().int).int32
  else:
    self.v = fastMod(self.v.int * self.init(a).v.int, self.getMod().uint32).int32
proc `==`(a:ModIntC, b:SomeIntC):bool = a.v == a.init(b).v
proc `!=`(a:ModIntC, b:SomeIntC):bool = a.v != a.init(b).v
proc `-`(self:ModIntC):auto =
  if self.v == 0: return self
  else: return self.init(self.getMod() - self.v)
proc `$`(a:ModIntC):string = return $(a.v)

proc `+=`(self:var ModIntC; a:SomeIntC) =
  self.v += self.init(a).v
  if self.v >= self.getMod(): self.v -= self.getMod()
proc `-=`(self:var ModIntC, a:SomeIntC) =
  self.v -= self.init(a).v
  if self.v < 0: self.v += self.getMod()
proc `^=`(self:var ModIntC, n:SomeInteger) =
  var (x,n,a) = (self,n,self.Identity)
  while n > 0:
    if (n and 1) > 0: a *= x
    x *= x
    n = (n shr 1)
  swap(self, a)
proc inverse(self: ModIntC):auto =
  var
    a = self.v.int
    b = self.getMod().int
    u = 1
    v = 0
  while b > 0:
    let t = a div b
    a -= t * b;swap(a, b)
    u -= t * v;swap(u, v)
  return self.init(u)
proc `/=`(a:var ModIntC,b:SomeIntC) = a *= a.init(b).inverse()
proc `+`(a:ModIntC,b:SomeIntC):auto = result = a;result += b
proc `-`(a:ModIntC,b:SomeIntC):auto = result = a;result -= b
proc `*`(a:ModIntC,b:SomeIntC):auto = result = a;result *= b
proc `/`(a:ModIntC,b:SomeIntC):auto = result = a;result /= b
proc `^`(a:ModIntC,b:SomeInteger):auto = result = a;result ^= b
# }}}
# }}}

# number_theoretic_transform {{{
import sequtils, algorithm, bitops

type NumberTheoreticTransform[ModInt] = object
  rev: seq[int]
  rts: seq[ModInt]
  base, max_base:int
  root: ModInt

proc initNumberTheoreticTransform[ModInt](root0 = -1):NumberTheoreticTransform[ModInt] =
  let Mod = ModInt.getMod()
  result = NumberTheoreticTransform[ModInt](base:1, rev: @[0, 1], rts: @[ModInt(0), ModInt(1)])
  assert(Mod >= 3 and Mod mod 2 == 1)
  var tmp = Mod - 1
  var max_base = 0
  while tmp mod 2 == 0: tmp = tmp shr 1; max_base+=1
  var root:ModInt
  if root0 == -1:
    root = ModInt(2)
    while root^((Mod - 1) shr 1) == 1: root += 1
  else:
    root = ModInt(root0)
  assert(root^(Mod - 1) == 1)
  root = root^((Mod - 1) shr max_base)
  result.max_base = max_base
  result.root = root

proc init[ModInt](self: typedesc[NumberTheoreticTransform[ModInt]]):auto = initNumberTheoreticTransform[ModInt]()

proc ensureBase[ModInt](self: var NumberTheoreticTransform[ModInt];nbase:int) =
  if nbase <= self.base: return
  self.rev.setLen(1 shl nbase)
  self.rts.setLen(1 shl nbase)
  for i in 0..<(1 shl nbase):
    self.rev[i] = (self.rev[i shr 1] shr 1) + ((i and 1) shl (nbase - 1))
  assert(nbase <= self.max_base)
  while self.base < nbase:
    let z = self.root^(1 shl (self.max_base - 1 - self.base))
    for i in 1 shl (self.base - 1) ..< 1 shl self.base:
      self.rts[i shl 1] = self.rts[i]
      self.rts[(i shl 1) + 1] = self.rts[i] * z
    self.base += 1

proc fft[ModInt](self: var NumberTheoreticTransform[ModInt];a:seq[ModInt]):auto =
  var a = a
  let n = a.len
  assert((n and (n - 1)) == 0)
  let zeros = countTrailingZeroBits(n)
  self.ensureBase(zeros)
  let shift = self.base - zeros
  for i in 0..<n:
    let j = self.rev[i] shr shift
    if i < j:
      swap(a[i], a[j])
  var k = 1
  while k < n:
    var i = 0
    while i < n:
      for j in 0..<k:
        let z = a[i + j + k] * self.rts[j + k]
        a[i + j + k] = a[i + j] - z
        a[i + j] = a[i + j] + z
      i += 2 * k
    k = k shl 1
  return a

proc ifft[ModInt](self: var NumberTheoreticTransform[ModInt];a:seq[ModInt]):auto =
  var a = a
  let n = a.len
  a = self.fft(a)
  a.reverse(1, a.len - 1)
  let inv_sz = ModInt(1) / ModInt(n)
  for i in 0..<n: a[i] *= inv_sz
  return a
proc dot[ModInt](self: NumberTheoreticTransform[ModInt], a,b: seq[ModInt]):seq[ModInt] =
  result = newSeq[ModInt](a.len)
  for i in 0..<a.len: result[i] = a[i] * b[i]

proc multiply[ModInt](self: var NumberTheoreticTransform[ModInt];a,b: seq[ModInt]):seq[ModInt] =
  var (a,b) = (a,b)
  let need = a.len + b.len - 1
  var nbase = 1
  while (1 shl nbase) < need: nbase += 1
  self.ensureBase(nbase)
  let sz = 1 shl nbase
  while a.len < sz: a.add(ModInt(0))
  while b.len < sz: b.add(ModInt(0))
  a.setLen(sz)
  b.setLen(sz)
  a = self.ifft(self.dot(self.fft(a), self.fft(b)))
  while a.len < need: a.add(ModInt(0))
  a.setLen(need)
  return a
#}}}

# garner {{{
proc garner[int](v:seq[tuple[a,p:int]], Mod:int):int =
  let sz = v.len
  var
    kp = newSeqWith(sz + 1, 0)
    rmult = newSeqWith(sz + 1, 1)
  var v = v
  v.add((0, Mod))
  for i in 0..<sz:
    DMint.setMod(v[i].p)
    var x = (DMint(v[i].a - kp[i]) * DMint(rmult[i]).inverse()).v
    for j in i+1..sz:
      DMint.setMod(v[j].p)
      kp[j] = (DMint(kp[j]) + DMint(rmult[j]) * x).v
      rmult[j] = (DMint(rmult[j]) * v[i].p).v
  return kp[sz]
# }}}

# ArbitraryModConvolution by NumberTheoricTransform {{{
declareDMint(DMintLocal)
type ArbitraryModConvolutionNTT[ModInt] = object
  ps:array[3, (int,int)]
  ntt:array[3, NumberTheoreticTransform[DMintLocal]]

#  remainder, primitive_root
#  (924844033, 5)
#  (998244353, 3)
#  (1012924417, 5)
#  (167772161, 3)
#  (469762049, 3)
#  (1224736769, 3)

proc init[ModInt](self:typedesc[ArbitraryModConvolutionNTT[ModInt]]):ArbitraryModConvolutionNTT[ModInt] =
  result = ArbitraryModConvolutionNTT[ModInt]()
  result.ps= [(924844033, 5), (998244353, 3), (1012924417, 5)]
  for i,(p,r) in result.ps:
    DMintLocal.setMod(p)
    result.ntt[i] = initNumberTheoreticTransform[DMintLocal](r)

proc fft[ModInt](self: var ArbitraryModConvolutionNTT[ModInt], a:seq[ModInt]):array[3, seq[DMintLocal]] =
  for i,(p,r) in self.ps:
    DMintLocal.setMod(p)
    result[i] = self.ntt[i].fft(a.mapIt(DMintLocal(it.v)))

proc dot[ModInt](self: ArbitraryModConvolutionNTT[ModInt], a, b:array[3, seq[DMintLocal]]):array[3, seq[DMintLocal]] =
  for i,(p,r) in self.ps:
    DMintLocal.setMod(p)
    result[i] = self.ntt[i].dot(a[i],b[i])

proc ifft[ModInt](self: var ArbitraryModConvolutionNTT[ModInt], a:array[3, seq[DMintLocal]]):seq[ModInt] =
  let
    n = a[0].len
    p0 = ModInt.getMod()
  var a = a
  for j,(p, r) in self.ps:
    DMintLocal.setMod(p)
    a[j] = self.ntt[j].ifft(a[j])
  result = newSeq[ModInt]()
  for i in 0..<n:
    var x = newSeq[(int,int)]()
    for j,(p, r) in self.ps:
      x.add((a[j][i].v.int, p))
    result.add(garner(x, p0))

proc ensureBase[ModInt](self: var ArbitraryModConvolutionNTT[ModInt], nbase:int) =
  for i,(p,r) in self.ps:
    DMintLocal.setMod(p)
    self.ntt[i].ensureBase(nbase)

proc multiply[ModInt](self:var ArbitraryModConvolutionNTT[ModInt], a,b:seq[ModInt]):seq[ModInt] =
  let need = a.len + b.len - 1
  var nbase = 1
  while (1 shl nbase) < need: nbase += 1
  self.ensureBase(nbase)
  let sz = 1 shl nbase
  var (a, b) = (a, b)
  a.setLen(sz)
  b.setLen(sz)

  result = self.ifft(self.dot(self.fft(a), self.fft(b)))
  result.setLen(need)
# }}}

const ArbitraryMod = true
const FastMod = true
const UseFFT = true

# FormalPowerSeries {{{
type FieldElem = concept x, type T
  x + x
  x - x
  x * x
  x / x

type FormalPowerSeries[T:FieldElem] = seq[T]

when not declared(FastMult):
  const FastMult = true
when not declared(UseFFT):
  const UseFFT = true
when not declared(ArbitraryMod):
  const ArbitraryMod = false
when UseFFT or FastMult:
  when ArbitraryMod:
    when declared(ArbitraryModConvolutionNTT):
      type BaseFFT[T] = ArbitraryModConvolutionNTT[T]
    elif declared(ArbitraryModConvolution):
      type BaseFFT[T] = ArbitraryModConvolution[T]
    else:
      assert(false)
  else:
    when declared(NumberTheoreticTransform):
      type BaseFFT[T] = NumberTheoreticTransform[T]
    else:
      assert(false)
  proc getFFT[T](self:FormalPowerSeries[T]):ptr BaseFFT[T] =
    var fft {.global.} = BaseFFT[T].init()
    return fft.addr

import sugar, sequtils, strformat

proc initFormalPowerSeries[T:FieldElem](n:int):auto = FormalPowerSeries[T](newSeq[T](n))
template initFormalPowerSeries[T](data: openArray[typed]):FormalPowerSeries[T] = data.mapIt(T(it))
proc `$`[T](self:FormalPowerSeries[T]):string = return self.mapIt($it).join(" ")

macro revise(a, b) =
  parseStmt(fmt"""let {a.repr} = if {a.repr} == -1: {b.repr} else: {a.repr}""")
#{{{ sqrt
type
  SQRT[T] = proc(t:T):T

proc sqrtSub[T](self:FormalPowerSeries[T], update: bool, f:SQRT[T]):(bool, SQRT[T]){.discardable.} =
  var is_set{.global.} = false
  var sqr{.global.}:SQRT[T] = nil
  if update:
    is_set = true
    sqr = f
  return (is_set, sqr)
proc isSetSqrt[T](self:FormalPowerSeries[T]):bool = return self.sqrtSub(false, nil)[0]
proc setSqrt[T](self:FormalPowerSeries[T], f: SQRT[T]):SQRT[T]{.discardable.} = return self.sqrtSub(true, f)[1]
proc getSqrt[T](self:FormalPowerSeries[T]):SQRT[T]{.discardable.} = return self.sqrtSub(false, nil)[1]
#}}}

proc shrink[T](self: var FormalPowerSeries[T]) =
  while self.len > 0 and self[^1] == 0: discard self.pop()

#{{{ operators +=, -=, *=, mod=, -, /=
proc `+=`(self: var FormalPowerSeries, r:FormalPowerSeries) =
  if r.len > self.len: self.setlen(r.len)
  for i in 0..<r.len: self[i] += r[i]
proc `+=`[T](self: var FormalPowerSeries[T], r:T) =
  if self.len == 0: self.setlen(1)
  self[0] += r

proc `-=`[T](self: var FormalPowerSeries[T], r:FormalPowerSeries[T]) =
  if r.len > self.len: self.setlen(r.len)
  for i in 0..<r.len: self[i] -= r[i]
  self.shrink()
proc `-=`[T](self: var FormalPowerSeries[T], r:T) =
  if self.len == 0: self.setlen(1)
  self[0] -= r
  self.shrink()

proc `*=`[T](self: var FormalPowerSeries[T], v:T) = self.applyIt(it * v)
proc `*=`[T](self: var FormalPowerSeries[T],  r: FormalPowerSeries[T]) =
  if self.len == 0 or r.len == 0:
    self.setlen(0)
  else:
    when FastMult:
      var fft = self.getFFT()
      self = fft[].multiply(self, r)
    else:
      var c = initFormalPowerSeries[T](self.len + r.len - 1)
      for i in 0..<self.len:
        for j in 0..<r.len:
          c[i + j] += self[i] + r[j]
      self.swap(c)

proc `mod=`[T](self: var FormalPowerSeries[T], r:FormalPowerSeries[T]) = self -= self div r * r

proc `-`[T](self: FormalPowerSeries[T]):FormalPowerSeries[T] =
  var ret = self
  ret.applyIt(-it)
  return ret
proc `/=`[T](self: var FormalPowerSeries[T], v:T) = self.applyIt(it / v)
#}}}

proc rev[T](self: FormalPowerSeries[T], deg = -1):auto =
  var ret = self
  if deg != -1: ret.setlen(deg)
  ret.reverse
  return ret

proc pre[T](self: FormalPowerSeries[T], sz:int):auto =
  result = self
  result.setlen(min(self.len, sz))

proc `div=`[T](self: var FormalPowerSeries[T], r: FormalPowerSeries[T]) =
  if self.len < r.len:
    self.setlen(0)
  else:
    let n = self.len - r.len + 1
    self = (self.rev().pre(n) * r.rev().inv(n)).pre(n).rev(n)

proc dot[T](self:FormalPowerSeries[T], r: FormalPowerSeries[T]):auto =
  var ret = initFormalPowerSeries[T](min(self.len, r.len))
  for i in 0..<ret.len: ret[i] = self[i] * r[i]
  return ret

proc `shr`[T](self: FormalPowerSeries[T], sz:int):auto =
  if self.len <= sz: return initFormalPowerSeries[T](0)
  result = self
  if sz >= 1: result.delete(0, sz - 1)
proc `shl`[T](self: FormalPowerSeries[T], sz:int):auto =
  result = initFormalPowerSeries[T](sz)
  result = result & self

proc diff[T](self: FormalPowerSeries[T]):auto =
  let n = self.len
  result = initFormalPowerSeries[T](max(0, n - 1))
  for i in 1..<n:
    result[i - 1] = self[i] * T(i)

proc integral[T](self: FormalPowerSeries[T]):auto =
  let n = self.len
  result = initFormalPowerSeries[T](n + 1)
  result[0] = T(0)
  for i in 0..<n: result[i + 1] = self[i] / T(i + 1)

# F(0) must not be 0
proc inv[T](self: FormalPowerSeries[T], deg = -1):auto =
  doAssert(self[0] != 0)
  deg.revise(self.len)
  when UseFFT:
    proc invFast[T](self: FormalPowerSeries[T]):auto =
      doAssert(self[0] != 0)
      let n = self.len
      var res = initFormalPowerSeries[T](1)
      res[0] = T(1) / self[0]
      var fft = self.getFFT()
      var d = 1
      while d < n:
        var f, g = initFormalPowerSeries[T](2 * d)
        for j in 0..<min(n, 2 * d): f[j] = self[j]
        for j in 0..<d: g[j] = res[j]
        let g1 = fft[].fft(g)
        f = fft[].ifft(fft[].dot(fft[].fft(f), g1))
        for j in 0..<d:
          f[j] = T(0)
          f[j + d] = -f[j + d]
        f = fft[].ifft(fft[].dot(fft[].fft(f), g1))
        f[0..<d] = res[0..<d]
        res = f
        d = d shl 1
      return res.pre(n)
    var ret = self
    ret.setlen(deg)
    return ret.invFast()
  else:
    var ret = initFormalPowerSeries[T](1)
    ret[0] = T(1) / self[0]
    var i = 1
    while i < deg:
      ret = (ret + ret - ret * ret * self.pre(i shl 1)).pre(i shl 1)
      i = i shl 1
    return ret.pre(deg)

# F(0) must be 1
proc log[T](self:FormalPowerSeries[T], deg = -1):auto =
  doAssert self[0] == T(1)
  deg.revise(self.len)
  return (self.diff() * self.inv(deg)).pre(deg - 1).integral()

proc sqrt[T](self: FormalPowerSeries[T], deg = -1):auto =
  let n = self.len
  deg.revise(n)
  if self[0] == 0:
    for i in 1..<n:
      if self[i] != 0:
        if (i and 1) > 0: return initFormalPowerSeries[T](0)
        if deg - i div 2 <= 0: break
        result = (self shr i).sqrt(deg - i div 2)
        if result.len == 0: return initFormalPowerSeries[T](0)
        result = result shl (i div 2)
        if result.len < deg: result.setlen(deg)
        return
    return initFormalPowerSeries[T](deg)

  var ret:FormalPowerSeries[T]
  if self.isSetSqrt:
    let sqr = self.getSqrt()(self[0])
    if sqr * sqr != self[0]: return initFormalPowerSeries[T](0)
    ret = initFormalPowerSeries[T](@[T(sqr)])
  else:
    doAssert(self[0] == 1)
    ret = initFormalPowerSeries[T](@[T(1)])

  let inv2 = T(1) / T(2);
  var i = 1
  while i < deg:
    ret = (ret + self.pre(i shl 1) * ret.inv(i shl 1)) * inv2
    i = i shl 1
  return ret.pre(deg)

import typetraits

# F(0) must be 0
proc exp[T](self: FormalPowerSeries[T], deg = -1):auto =
  doAssert self[0] == 0
  deg.revise(self.len)
  when UseFFT:
    var fft = self.getFFT()
    proc onlineConvolutionExp[T](self, conv_coeff:FormalPowerSeries[T]):auto =
      let n = conv_coeff.len
      doAssert((n and (n - 1)) == 0)
      type FFTType = fft[].fft(initFormalPowerSeries[T](0)).type
      var
        conv_ntt_coeff = newSeq[FFTType]()
        i = n
      while (i shr 1) > 0:
        var g = conv_coeff.pre(i)
        conv_ntt_coeff.add(fft[].fft(g))
        i = i shr 1
      var conv_arg, conv_ret = initFormalPowerSeries[T](n)
      proc rec(l,r,d:int) =
        if r - l <= 16:
          for i in l..<r:
            var sum = T(0)
            for j in l..<i: sum += conv_arg[j] * conv_coeff[i - j]
            conv_ret[i] += sum
            conv_arg[i] = if i == 0: T(1) else: conv_ret[i] / i
        else:
          var m = (l + r) div 2
          rec(l, m, d + 1)
          var pre = initFormalPowerSeries[T](r - l)
          pre[0..<m-l] = conv_arg[l..<m]
          pre = fft[].ifft(fft[].dot(fft[].fft(pre), conv_ntt_coeff[d]))
          for i in 0..<r - m: conv_ret[m + i] += pre[m + i - l]
          rec(m, r, d + 1)
      rec(0, n, 0)
      return conv_arg
    proc expRec[T](self: FormalPowerSeries[T]):auto =
      doAssert self[0] == 0
      let n = self.len
      var m = 1
      while m < n: m *= 2
      var conv_coeff = initFormalPowerSeries[T](m)
      for i in 1..<n: conv_coeff[i] = self[i] * i
      return self.onlineConvolutionExp(conv_coeff).pre(n)
    var ret = self
    ret.setlen(deg)
    return ret.expRec()
  else:
    var
      ret = initFormalPowerSeries[T](@[T(1)])
      i = 1
    while i < deg:
      ret = (ret * (self.pre(i shl 1) + T(1) - ret.log(i shl 1))).pre(i shl 1);
      i = i shl 1
    return ret.pre(deg)

proc pow[T](self: FormalPowerSeries[T], k:int, deg = -1):auto =
  var self = self
  let n = self.len
  deg.revise(n)
  self.setLen(deg)
  for i in 0..<n:
    if self[i] != T(0):
      let rev = T(1) / self[i]
      result = (((self * rev) shr i).log(deg) * T(k)).exp() * (self[i]^k)
      if i * k > deg: return initFormalPowerSeries[T](deg)
      result = (result shl (i * k)).pre(deg)
      if result.len < deg: result.setlen(deg)
      return
  return self

proc eval[T](self: FormalPowerSeries[T], x:T):T =
  var
    r = T(0)
    w = T(1)
  for v in self:
    r += w * v
    w *= x
  return r

proc powMod[T](self: FormalPowerSeries[T], n:int, M:FormalPowerSeries[T]):auto =
  let modinv = M.rev().inv()
  proc getDiv(base:FormalPowerSeries[T]):FormalPowerSeries[T] =
    var base = base
    if base.len < M.len:
      base.setlen(0)
      return base
    let n = base.len - M.len + 1
    return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n)
  var
    n = n
    x = self
    ret = initFormalPowerSeries[T](@[T(1)])
  while n > 0:
    if (n and 1) > 0:
      ret *= x
      ret -= getDiv(ret) * M
    x *= x
    x -= getDiv(x) * M
    n = n shr 1
  return ret

# operators +, -, *, div, mod {{{
macro declareOp(op) = fmt"""proc `{op}`[T](self:FormalPowerSeries[T];r:FormalPowerSeries[T] or T):FormalPowerSeries[T] = result = self;result {op}= r""".parseStmt
declareOp(`+`);declareOp(`-`);declareOp(`*`);declareOp(`/`)

proc `div`[T](self, r:FormalPowerSeries[T]):FormalPowerSeries[T] = result = self;result.`div=` (r)
proc `mod`[T](self, r:FormalPowerSeries[T]):FormalPowerSeries[T] = result = self;result.`mod=` (r)
# }}}
# }}}

# modSqrt {{{
proc modSqrt[ModInt](a:ModInt):ModInt =
  let p = a.getMod()
  if a == 0: return 0
  if p == 2: return a
  if a ^ ((p - 1) shr 1) != 1: return -1
  var b = ModInt(1)
  while b ^ ((p - 1) shr 1) == 1: b += 1
  var
    e = 0
    m = p - 1
  while m mod 2 == 0: m = m shr 1; e.inc
  var
    x = a ^ ((m - 1) shr 1) * a
    y = a * x * x
    z = b ^ m
  while y != 1:
    var
      j = 0
      t = y
    while t != 1: j.inc; t *= t
    z = z ^ (1 shl (e - j - 1))
    x *= z;z *= z;y *= z
    e = j
  return x
#}}}

let N = nextInt()
let im = modSqrt(Mint(-1))

var
  f = Mint(1)
  P = initFormalPowerSeries[Mint](N + 1)
for i in 1..N:
  f *= Mint(i)
  P[i] = Mint(i + 1)^2

let e1 = exp(P * im)
let e2 = exp(P * (-im))
let sinP = (e1 - e2) / (Mint(im) * 2)
let cosP = (e1 + e2) / Mint(2)
let ans = (sinP + cosP) * f

for i,a in ans:
  if i > 0:
    echo a
0