結果
| 問題 |
No.1116 Cycles of Dense Graph
|
| コンテスト | |
| ユーザー |
LayCurse
|
| 提出日時 | 2020-07-17 23:16:04 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 16,388 bytes |
| コンパイル時間 | 3,442 ms |
| コンパイル使用メモリ | 224,604 KB |
| 最終ジャッジ日時 | 2025-01-11 23:24:47 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 WA * 1 |
| other | AC * 24 WA * 10 TLE * 4 |
ソースコード
#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
void *wmem;
char memarr[96000000];
template<class S, class T> inline S min_L(S a,T b){
return a<=b?a:b;
}
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
template<class T, class S> inline T pow_L(T a, S b){
T res = 1;
res = 1;
for(;;){
if(b&1){
res *= a;
}
b >>= 1;
if(b==0){
break;
}
a *= a;
}
return res;
}
inline double pow_L(double a, double b){
return pow(a,b);
}
template<class S> inline void arrInsert(const int k, int &sz, S a[], const S aval){
int i;
sz++;
for(i=sz-1;i>k;i--){
a[i] = a[i-1];
}
a[k] = aval;
}
template<class S, class T> inline void arrInsert(const int k, int &sz, S a[], const S aval, T b[], const T bval){
int i;
sz++;
for(i=sz-1;i>k;i--){
a[i] = a[i-1];
}
for(i=sz-1;i>k;i--){
b[i] = b[i-1];
}
a[k] = aval;
b[k] = bval;
}
template<class S, class T, class U> inline void arrInsert(const int k, int &sz, S a[], const S aval, T b[], const T bval, U c[], const U cval){
int i;
sz++;
for(i=sz-1;i>k;i--){
a[i] = a[i-1];
}
for(i=sz-1;i>k;i--){
b[i] = b[i-1];
}
for(i=sz-1;i>k;i--){
c[i] = c[i-1];
}
a[k] = aval;
b[k] = bval;
c[k] = cval;
}
template<class S, class T, class U, class V> inline void arrInsert(const int k, int &sz, S a[], const S aval, T b[], const T bval, U c[], const U cval, V d[], const V dval){
int i;
sz++;
for(i=sz-1;i>k;i--){
a[i] = a[i-1];
}
for(i=sz-1;i>k;i--){
b[i] = b[i-1];
}
for(i=sz-1;i>k;i--){
c[i] = c[i-1];
}
for(i=sz-1;i>k;i--){
d[i] = d[i-1];
}
a[k] = aval;
b[k] = bval;
c[k] = cval;
d[k] = dval;
}
template<class S, class T> inline S chmax(S &a, T b){
if(a<b){
a=b;
}
return a;
}
template<class T> struct Comb{
int mem_fact;
T *factri;
T *ifactri;
Comb(){
mem_fact = 0;
}
inline void expand_fact(int k){
if(k <= mem_fact){
return;
}
chmax(k, 2* mem_fact);
if(mem_fact == 0){
int i;
factri = (T*)malloc(k * sizeof(T));
ifactri = (T*)malloc(k * sizeof(T));
factri[0] = 1;
for(i=(1);i<(k);i++){
factri[i] = i * factri[i-1];
}
ifactri[k-1] = 1 / factri[k-1];
for(i=(k-1)-1;i>=(0);i--){
ifactri[i] = (i+1) * ifactri[i+1];
}
}
else{
int i;
factri = (T*)realloc(factri, k * sizeof(T));
ifactri = (T*)realloc(ifactri, k * sizeof(T));
for(i=(mem_fact);i<(k);i++){
factri[i] = i * factri[i-1];
}
ifactri[k-1] = 1 / factri[k-1];
for(i=(k-1)-1;i>=(mem_fact);i--){
ifactri[i] = (i+1) * ifactri[i+1];
}
}
mem_fact = k;
}
inline T fac(int k){
if(mem_fact < k+1){
expand_fact(k+1);
}
return factri[k];
}
inline T ifac(int k){
if(mem_fact < k+1){
expand_fact(k+1);
}
return ifactri[k];
}
inline T C(int a, int b){
if(b < 0 || b > a){
return 0;
}
if(mem_fact < a+1){
expand_fact(a+1);
}
return factri[a] * ifactri[b] * ifactri[a-b];
}
inline T P(int a, int b){
if(b < 0 || b > a){
return 0;
}
if(mem_fact < a+1){
expand_fact(a+1);
}
return factri[a] * ifactri[a-b];
}
inline T H(int a, int b){
if(a==0 && b==0){
return 1;
}
if(a <= 0 || b < 0){
return 0;
}
if(mem_fact < a+b){
expand_fact(a+b);
}
return C(a+b-1, b);
}
inline T Multinomial(int sz, int a[]){
int i;
int s = 0;
T res;
for(i=(0);i<(sz);i++){
s += a[i];
}
if(mem_fact < s+1){
expand_fact(s+1);
}
res = factri[s];
for(i=(0);i<(sz);i++){
res *= ifactri[a[i]];
}
return 1;
}
inline T Multinomial(int a){
return 1;
}
inline T Multinomial(int a, int b){
if(mem_fact < a+b+1){
expand_fact(a+b+1);
}
return factri[a+b] * ifactri[a] * ifactri[b];
}
inline T Multinomial(int a, int b, int c){
if(mem_fact < a+b+c+1){
expand_fact(a+b+c+1);
}
return factri[a+b+c] * ifactri[a] * ifactri[b] * ifactri[c];
}
inline T Multinomial(int a, int b, int c, int d){
if(mem_fact < a+b+c+d+1){
expand_fact(a+b+c+d+1);
}
return factri[a+b+c+d] * ifactri[a] * ifactri[b] * ifactri[c] * ifactri[d];
}
inline T Catalan(int n){
if(n < 0){
return 0;
}
if(mem_fact < 2*n+1){
expand_fact(2*n+1);
}
return factri[2*n] * ifactri[n] * ifactri[n+1];
}
inline T C_s(long long a, long long b){
long long i;
T res;
if(b < 0 || b > a){
return 0;
}
if(b > a - b){
b = a - b;
}
res = 1;
for(i=(0);i<(b);i++){
res *= a - i;
res /= i + 1;
}
return res;
}
inline T P_s(long long a, long long b){
long long i;
T res;
if(b < 0 || b > a){
return 0;
}
res = 1;
for(i=(0);i<(b);i++){
res *= a - i;
}
return res;
}
inline T per_s(long long n, long long k){
T d;
int m;
if(n < 0 || k < 0){
return 0;
}
if(n == k && k == 0){
return 1;
}
if(n == 0 || k == 0){
return 0;
}
if(k==1){
return 1;
}
if(k==2){
d = n / 2;
return d;
}
if(k==3){
d = (n-1) / 6;
m = (n-1) % 6;
if(m==0){
return 3 * d * d + d;
}
if(m==1){
return 3 * d * d + 2 * d;
}
if(m==2){
return 3 * d * d + 3 * d + 1;
}
if(m==3){
return 3 * d * d + 4 * d + 1;
}
if(m==4){
return 3 * d * d + 5 * d + 2;
}
if(m==5){
return 3 * d * d + 6 * d + 3;
}
}
assert(0 && "per_s should be k <= 3");
return -1;
}
}
;
struct unionFind{
int *d;
int N;
int M;
inline void malloc(const int n){
d = (int*)std::malloc(n*sizeof(int));
M = n;
}
inline void malloc(const int n, const int fg){
d = (int*)std::malloc(n*sizeof(int));
M = n;
if(fg){
init(n);
}
}
inline void free(void){
std::free(d);
}
inline void walloc(const int n, void **mem=&wmem){
walloc1d(&d, n, mem);
M = n;
}
inline void walloc(const int n, const int fg, void **mem=&wmem){
walloc1d(&d, n, mem);
M = n;
if(fg){
init(n);
}
}
inline void init(const int n){
int i;
N = n;
for(i=(0);i<(n);i++){
d[i] = -1;
}
}
inline void init(void){
init(M);
}
inline int get(int a){
int t = a;
int k;
while(d[t]>=0){
t=d[t];
}
while(d[a]>=0){
k=d[a];
d[a]=t;
a=k;
}
return a;
}
inline int connect(int a, int b){
if(d[a]>=0){
a=get(a);
}
if(d[b]>=0){
b=get(b);
}
if(a==b){
return 0;
}
if(d[a] < d[b]){
d[a] += d[b];
d[b] = a;
}
else{
d[b] += d[a];
d[a] = b;
}
return 1;
}
inline int operator()(int a){
return get(a);
}
inline int operator()(int a, int b){
return connect(a,b);
}
inline int& operator[](const int a){
return d[a];
}
inline int size(int a){
a = get(a);
return -d[a];
}
inline int sizeList(int res[]){
int i;
int sz=0;
for(i=(0);i<(N);i++){
if(d[i]<0){
res[sz++] = -d[i];
}
}
return sz;
}
}
;
template<class T> int coordcomp_L(int n, T arr[], int res[] = NULL, void *mem = wmem){
int i;
int k = 0;
pair<T,int> *r;
walloc1d(&r, n, &mem);
for(i=(0);i<(n);i++){
r[i].first = arr[i];
r[i].second = i;
}
sort(r, r+n);
if(res != NULL){
for(i=(0);i<(n);i++){
if(i && r[i].first != r[i-1].first){
k++;
}
res[r[i].second] = k;
}
}
else{
for(i=(0);i<(n);i++){
if(i && r[i].first != r[i-1].first){
k++;
}
arr[r[i].second] = k;
}
}
return k+1;
}
template<class T> int coordcomp_L(int n1, T arr1[], int n2, T arr2[], int res1[] = NULL, int res2[] = NULL, void *mem = wmem){
int i;
int k = 0;
pair<T,int> *r;
walloc1d(&r, n1+n2, &mem);
for(i=(0);i<(n1);i++){
r[i].first = arr1[i];
r[i].second = i;
}
for(i=(0);i<(n2);i++){
r[n1+i].first = arr2[i];
r[n1+i].second = n1+i;
}
sort(r, r+n1+n2);
for(i=(0);i<(n1+n2);i++){
if(i && r[i].first != r[i-1].first){
k++;
}
if(r[i].second < n1){
if(res1!=NULL){
res1[r[i].second] = k;
}
else{
arr1[r[i].second] = k;
}
}
else{
if(res2!=NULL){
res2[r[i].second-n1] = k;
}
else{
arr2[r[i].second-n1] = k;
}
}
}
return k+1;
}
int N;
int M;
int A[20];
int B[20];
int deg[30];
Modint dp[100000+1];
Comb<Modint> c;
unionFind uf;
Modint solve(int N, int M, int A[], int B[]){
int i;
int j;
int k;
int mx =min_L(30, N);
int x = 0;
int y = 0;
int cnt = 0;
Modint res = 0;
uf.init(mx);
for(k=(0);k<(M);k++){
if(!uf(A[k],B[k])){
cnt++;
}
}
for(k=(0);k<(mx);k++){
deg[k] = 0;
}
for(k=(0);k<(M);k++){
deg[A[k]]++;
deg[B[k]]++;
}
for(k=(0);k<(mx);k++){
if(deg[k] >= 3){
return 0;
}
}
for(k=(0);k<(mx);k++){
if(deg[k]==1){
x++;
}
}
for(k=(0);k<(mx);k++){
if(deg[k]==2){
y++;
}
}
if(cnt==1 && x==0){
return 1;
}
if(cnt){
return 0;
}
x /= 2;
N -= x + y;
if(x==1){
res += N-1;
}
if(x==2){
res += 2;
}
for(i=(3);i<(N+1);i++){
res += c.C(N-x,i-x) * ((pow_L((Modint(2)),x))) * c.fac(i-1) / 2;
}
return res;
}
int main(){
int mask;
wmem = memarr;
int m;
int a[20];
int b[20];
Modint res = 0;
rd(N);
rd(M);
{
int APIVbQlN;
for(APIVbQlN=(0);APIVbQlN<(M);APIVbQlN++){
rd(A[APIVbQlN]);
rd(B[APIVbQlN]);
}
}
coordcomp_L(M,A,M,B);
uf.malloc(30);
for(mask=(0);mask<(1<<M);mask++){
int i;
m = 0;
for(i=(0);i<(M);i++){
if(((mask) &(1<<(i)))){
arrInsert(m,m,a,A[i],b,B[i]);
}
}
if(m%2){
res -=solve(N, m, a, b);
}
else{
res +=solve(N, m, a, b);
}
}
wt_L(res);
wt_L('\n');
return 0;
}
// cLay varsion 20200509-1
// --- original code ---
// #define MD 998244353
// int N, M, A[20], B[20];
// int deg[30];
// Modint dp[1d5+1];
// Comb<Modint> c;
// unionFind uf;
//
// Modint solve(int N, int M, int A[], int B[]){
// int i, j, k, mx = min(30, N), x = 0, y = 0, cnt = 0;
// Modint res = 0;
//
// uf.init(mx);
// rep(k,M) if(!uf(A[k],B[k])) cnt++;
//
// rep(k,mx) deg[k] = 0;
// rep(k,M) deg[A[k]]++, deg[B[k]]++;
//
// rep(k,mx) if(deg[k] >= 3) return 0;
// rep(k,mx) if(deg[k]==1) x++;
// rep(k,mx) if(deg[k]==2) y++;
//
// if(cnt==1 && x==0) return 1;
// if(cnt) return 0;
//
// x /= 2;
// N -= x + y;
//
// if(x==1) res += N-1;
// if(x==2) res += 2;
// rep(i,3,N+1) res += c.C(N-x,i-x) * ((Modint(2)) ** x) * c.fac(i-1) / 2;
// return res;
// }
//
// {
// int m, a[20], b[20];
// Modint res = 0;
// rd(N,M,(A,B)(M));
// coordcomp(M,A,M,B);
// uf.malloc(30);
//
// rep(mask,1<<M){
// m = 0;
// rep(i,M) if(BIT_ith(mask,i)) arrInsert(m,m,a,A[i],b,B[i]);
// res if[m%2, -=, +=] solve(N, m, a, b);
// }
//
// wt(res);
// }
LayCurse