結果

問題 No.1116 Cycles of Dense Graph
ユーザー tokusakuraitokusakurai
提出日時 2020-07-18 09:42:43
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 136 ms / 2,000 ms
コード長 5,476 bytes
コンパイル時間 2,540 ms
コンパイル使用メモリ 218,212 KB
実行使用メモリ 19,252 KB
最終ジャッジ日時 2024-11-30 20:30:47
合計ジャッジ時間 5,209 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 15 ms
19,060 KB
testcase_01 AC 101 ms
19,232 KB
testcase_02 AC 16 ms
19,032 KB
testcase_03 AC 15 ms
19,112 KB
testcase_04 AC 15 ms
19,072 KB
testcase_05 AC 19 ms
19,240 KB
testcase_06 AC 34 ms
19,252 KB
testcase_07 AC 17 ms
19,128 KB
testcase_08 AC 16 ms
19,072 KB
testcase_09 AC 16 ms
19,044 KB
testcase_10 AC 15 ms
19,036 KB
testcase_11 AC 25 ms
19,076 KB
testcase_12 AC 18 ms
19,168 KB
testcase_13 AC 15 ms
19,204 KB
testcase_14 AC 15 ms
19,116 KB
testcase_15 AC 15 ms
19,136 KB
testcase_16 AC 18 ms
19,056 KB
testcase_17 AC 16 ms
19,068 KB
testcase_18 AC 16 ms
19,156 KB
testcase_19 AC 20 ms
19,092 KB
testcase_20 AC 22 ms
19,072 KB
testcase_21 AC 19 ms
19,104 KB
testcase_22 AC 38 ms
19,240 KB
testcase_23 AC 16 ms
19,108 KB
testcase_24 AC 116 ms
19,044 KB
testcase_25 AC 16 ms
19,076 KB
testcase_26 AC 130 ms
19,056 KB
testcase_27 AC 16 ms
19,048 KB
testcase_28 AC 21 ms
19,128 KB
testcase_29 AC 17 ms
19,048 KB
testcase_30 AC 16 ms
19,108 KB
testcase_31 AC 16 ms
19,108 KB
testcase_32 AC 16 ms
19,128 KB
testcase_33 AC 16 ms
19,064 KB
testcase_34 AC 14 ms
19,116 KB
testcase_35 AC 16 ms
19,048 KB
testcase_36 AC 136 ms
19,044 KB
testcase_37 AC 105 ms
19,104 KB
testcase_38 AC 114 ms
19,040 KB
testcase_39 AC 99 ms
19,100 KB
testcase_40 AC 108 ms
19,140 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for(int i = 0; i < n; i++)
#define rep2(i, x, n) for(int i = x; i <= n; i++)
#define rep3(i, x, n) for(int i = x; i >= n; i--)
#define elif else if
#define sp(x) fixed << setprecision(x)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define sz(x) (int)x.size()
using ll = long long;
using ld = long double;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
//const ll MOD = 1e9+7;
const ll MOD = 998244353;
const int inf = (1<<30)-1;
const ll INF = (1LL<<60)-1;
const ld EPS = 1e-10;
template<typename T> bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;};
template<typename T> bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;};

template<ll mod>
struct Mod_Int{
    ll x;
    Mod_Int() {}
    Mod_Int(ll y) : x (y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    Mod_Int &operator += (const Mod_Int &p){
        x = (x + p.x) % mod;
        return *this;
    }

    Mod_Int &operator -= (const Mod_Int &p){
        x = (x + mod - p.x) % mod;
        return *this;
    }

    Mod_Int &operator *= (const Mod_Int &p){
        x = (x * p.x) % mod;
        return *this;
    }

    Mod_Int &operator /= (const Mod_Int &p){
        *this *= p.inverse();
        return *this;
    }

    Mod_Int &operator ++ () {return *this += Mod_Int(1);}

    Mod_Int operator ++ (int){
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int &operator -- () {return *this -= Mod_Int(1);}

    Mod_Int operator -- (int){
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator - () const {return Mod_Int(-x);}

    Mod_Int operator + (const Mod_Int &p) const {return Mod_Int(*this) += p;}

    Mod_Int operator - (const Mod_Int &p) const {return Mod_Int(*this) -= p;}

    Mod_Int operator * (const Mod_Int &p) const {return Mod_Int(*this) *= p;}

    Mod_Int operator / (const Mod_Int &p) const {return Mod_Int(*this) /= p;}

    bool operator == (const Mod_Int &p) const {return x == p.x;}

    bool operator != (const Mod_Int &p) const {return x != p.x;}

    Mod_Int pow(ll n) const{
        Mod_Int now = *this, ret = 1;
        while(n > 0){
            if(n & 1) ret *= now;
            now *= now, n >>= 1;
        }
        return ret;
    }

    Mod_Int inverse() const{
        return pow(mod-2);
    }

    friend ostream &operator << (ostream &os, const Mod_Int &p){
        return os << p.x;
    }

    friend istream &operator >> (istream &is, Mod_Int &p){
        ll a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

using mint = Mod_Int<MOD>;
const int MAX_N = 1e6;
mint fac[MAX_N+1], ifac[MAX_N+1];

void init(){
    fac[0] = 1;
    rep2(i, 1, MAX_N){
        fac[i] = fac[i-1]*i;
    }
    ifac[MAX_N] = fac[MAX_N].inverse();
    rep3(i, MAX_N, 1){
        ifac[i-1] = ifac[i]*i;
    }
}

mint comb(int n, int k){
    return fac[n]*ifac[n-k]*ifac[k];
}

mint perm(int n, int k){
    return fac[n]*ifac[n-k];
}

struct Union_Find_Tree{
    vector<int> par, rank, num;
    
    Union_Find_Tree(int N){
        par.assign(N, -1);
        rank.assign(N, 0);
        num.assign(N, 1);
    }
    
    int root(int x){
        if(par[x] < 0 || par[x] == x) return x;
        return par[x] = root(par[x]);
    }
    
    void unite(int x, int y){
        x = root(x), y = root(y);
        if(x == y) return;
        elif(rank[x] < rank[y]) par[x] = y, num[y] += num[x];
        else{
            par[y] = x, num[x] += num[y];
            if(rank[x] == rank[y]) rank[x]++;
        }
    }
    
    int size(int x) {return num[root(x)];}
    
    bool same(int x, int y){
        return root(x) == root(y);
    }
    
    void clear(){
        fill(par.begin(), par.end(), -1);
        fill(rank.begin(), rank.end(), 0);
        fill(num.begin(), num.end(), 1);
    }
};

int main(){
    int N, M;
    cin >> N >> M;
    int u[M], v[M];
    rep(i, M) {
        cin >> u[i] >> v[i]; u[i]--, v[i]--;
    }
    mint ans = 0;
    init();
    rep2(i, 3, N) ans += comb(N, i)*fac[i-1]/2;
    mint num[2*M+1][M+1];
    rep(i, 2*M+1){
        int n = N-i;
        if(n < 0) continue;
        rep2(j, 1, M){
            num[i][j] = 0;  
            rep2(k, 0, n){
                num[i][j] += perm(n, k)*comb(k+j-1, k);
            }
            if(i == 2 && j == 1) num[i][j]--;
        }
    }
    map<int, int> mp;
    rep2(i, 1, (1<<M)-1){
        rep(j, M){
            if(i&(1<<j)) mp[u[j]]++, mp[v[j]]++;
        }
        bool flag = false;
        int cnt1 = 0, cnt2 = 0;
        int n = 0;
        for(auto &e: mp){
            if(e.second >= 3) flag = true;
            elif(e.second == 2) cnt2++;
            else cnt1++;
            e.second = n++;
        }
        Union_Find_Tree uft(n);
        int circle = 0;
        rep(j, M){
            if(!(i&(1<<j))) continue;
            if(uft.same(mp[u[j]], mp[v[j]]) && cnt1) flag = true;
            elif(uft.same(mp[u[j]], mp[v[j]])) circle++;
            else uft.unite(mp[u[j]], mp[v[j]]);
        }
        if(circle >= 2) flag = true;
        cnt1 /= 2;
        mp.clear();
        if(flag) continue;
        mint tmp;
        if(cnt1 == 0) tmp = 1;
        else tmp = fac[cnt1-1]*mint(2).pow(cnt1-1)*num[cnt2+cnt1*2][cnt1];
        if(__builtin_popcount(i)%2 == 0) ans += tmp;
        else ans -= tmp;
    }
    cout << ans << endl;
}
0