結果
問題 | No.1121 Social Distancing in Cinema |
ユーザー | fine |
提出日時 | 2020-07-22 22:21:34 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,148 bytes |
コンパイル時間 | 2,028 ms |
コンパイル使用メモリ | 188,748 KB |
実行使用メモリ | 25,944 KB |
最終ジャッジ日時 | 2024-06-22 18:52:23 |
合計ジャッジ時間 | 16,020 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | RE | - |
testcase_19 | RE | - |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | RE | - |
testcase_24 | WA | - |
testcase_25 | RE | - |
testcase_26 | RE | - |
testcase_27 | RE | - |
testcase_28 | RE | - |
testcase_29 | RE | - |
testcase_30 | RE | - |
testcase_31 | RE | - |
testcase_32 | RE | - |
testcase_33 | RE | - |
testcase_34 | RE | - |
testcase_35 | RE | - |
testcase_36 | RE | - |
testcase_37 | RE | - |
testcase_38 | RE | - |
testcase_39 | RE | - |
testcase_40 | RE | - |
testcase_41 | RE | - |
testcase_42 | RE | - |
testcase_43 | RE | - |
testcase_44 | RE | - |
testcase_45 | RE | - |
testcase_46 | RE | - |
testcase_47 | AC | 2 ms
6,944 KB |
testcase_48 | AC | 2 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; constexpr char newl = '\n'; using P = complex<double>; #define EPS 1e-10 #define EQ(a,b) (abs((a)-(b)) < EPS) #define EQV(a,b) (EQ((a).real(),(b).real()) && EQ((a).imag(),(b).imag())) //内積 double dot(P a, P b) { return a.real() * b.real() + a.imag() * b.imag(); } //外積 double cross(P a, P b) { return a.real() * b.imag() - a.imag() * b.real(); } //点の進行方向 int ccw(P a, P b, P c) { b -= a; c -= a; if (cross(b, c) > 0) return 1; //counter clockwise if (cross(b, c) < 0) return -1; //clockwise if (dot(b, c) < 0) return 2; //c--a--b on line if (abs(b) < abs(c)) return -2; //a--b--c on line return 0; //a--c--b(b==c含む) on line } //2直線の直交判定 bool is_orthogonal(P a1, P a2, P b1, P b2) { return EQ(dot(a1 - a2, b1 - b2), 0.0); } //2直線の平行判定 bool is_parallel(P a1, P a2, P b1, P b2) { return EQ(cross(a1 - a2, b1 - b2), 0.0); } //点cが直線a,b上にあるか bool is_point_on_line(P a, P b, P c) { return is_parallel(c, a, b, a); } //点cが線分a,b上にあるか bool is_point_on_segment(P a, P b, P c) { return abs(a - c) + abs(c - b) < abs(a - b) + EPS; } //点a,bを通る直線と点cとの距離 double is_distance_l_p(P a, P b, P c) { return abs(cross(b - a, c - a)) / abs(b - a); } //点a,bを通る線分と点cとの距離 double is_distance_s_p(P a, P b, P c) { if (dot(b - a, c - a) < EPS) return abs(c - a); if (dot(a - b, c - b) < EPS) return abs(c - b); return is_distance_l_p(a, b, c); } //線分a1,a2と線分b1,b2の交差判定 bool is_intersected_s(P a1, P a2, P b1, P b2) { return cross(a1 - a2, b1 - a1) * cross(a1 - a2, b2 - a1) < EPS && cross(b1 - b2, a1 - b1) * cross(b1 - b2, a2 - b1) < EPS; } //線分a1,a2と線分b1,b2の交点計算 P intersection_s(P a1, P a2, P b1, P b2) { P b = b1 - b2; double d1 = abs(cross(b, a1 - b1)); double d2 = abs(cross(b, a2 - b1)); double t = d1 / (d1 + d2); return a1 + (a2 - a1) * t; } //直線a1,a2と直線b1,b2の交点計算 P intersection_l(P a1, P a2, P b1, P b2) { P a = a2 - a1; P b = b2 - b1; return a1 + a * cross(b, b1 - a1) / cross(b, a); } vector<P> convex_hull(vector<P>& ps) { auto comp = [](const P& p1, const P& p2) { //辞書順で比較 return (p1.real() != p2.real() ? p1.real() < p2.real() : p1.imag() < p2.imag()); }; sort(ps.begin(), ps.end(), comp); vector<P> res; for (P& p : ps) { while (res.size() > 1 && cross(res.back() - *prev(res.end(), 2), p - res.back()) < 0) { res.pop_back(); } res.push_back(p); } for (int i = (int)ps.size() - 2, t = res.size(); i >= 0; i--) { while (res.size() > t && cross(res.back() - *prev(res.end(), 2), ps[i] - res.back()) < 0) { res.pop_back(); } res.push_back(ps[i]); } res.pop_back(); return res; } bool check(const vector<int>& ans, const vector<int>& x, const vector<int>& y) { int n = x.size(); int K = ans.size(); if (n > 90 * K) return false; for (int i = 0; i < K; i++) { int ii = ans[i]; for (int j = 0; j < i; j++) { int jj = ans[j]; int dx = x[ii] - x[jj]; int dy = y[ii] - y[jj]; if (dx * dx + dy * dy > 100) return false; } } return true; } int main() { cin.tie(nullptr); ios::sync_with_stdio(false); int n; cin >> n; vector<int> x(n), y(n); vector<P> ps; map<int, int> ids; for (int i = 0; i < n; i++) { cin >> x[i] >> y[i]; ps.emplace_back(x[i], y[i]); ids[x[i] * 1000 + y[i]] = i; } vector<P> chs = ps; int K = (n + 89) / 90; vector<int> ans; ans.reserve(K); vector<int> cands(n); iota(cands.begin(), cands.end(), 0); for (int loop = 0; loop < K; loop++) { assert(!cands.empty()); int tar = cands.front(); if (loop == 0) { tar = ids[(int)chs[0].real() * 1000 + chs[0].imag()]; } else { int max_cnt = -1; for (int i : cands) { int cnt = 0; for (int j : cands) { if (i == j) continue; int dx = x[j] - x[i]; int dy = y[j] - y[i]; if (dx * dx + dy * dy > 100) continue; ++cnt; } if (cnt > max_cnt) { tar = i; max_cnt = cnt; } } } vector<int> next_cands; for (int i : cands) { if (i == tar) continue; int dx = x[tar] - x[i]; int dy = y[tar] - y[i]; if (dx * dx + dy * dy > 100) continue; next_cands.push_back(i); } cands = move(next_cands); ans.push_back(tar); } assert(check(ans, x, y)); cout << K << newl; for (int i = 0; i < K; i++) { cout << ans[i] + 1 << " \n"[i + 1 == K]; } return 0; }