結果

問題 No.1078 I love Matrix Construction
ユーザー Shuz*Shuz*
提出日時 2020-07-24 08:15:26
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 500 ms / 2,000 ms
コード長 8,295 bytes
コンパイル時間 2,312 ms
コンパイル使用メモリ 182,528 KB
実行使用メモリ 82,824 KB
最終ジャッジ日時 2024-06-24 16:56:26
合計ジャッジ時間 9,244 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 44 ms
15,024 KB
testcase_03 AC 147 ms
33,608 KB
testcase_04 AC 227 ms
45,468 KB
testcase_05 AC 183 ms
38,260 KB
testcase_06 AC 41 ms
14,480 KB
testcase_07 AC 13 ms
7,552 KB
testcase_08 AC 183 ms
38,084 KB
testcase_09 AC 7 ms
5,376 KB
testcase_10 AC 500 ms
82,824 KB
testcase_11 AC 239 ms
47,784 KB
testcase_12 AC 395 ms
69,260 KB
testcase_13 AC 450 ms
77,400 KB
testcase_14 AC 297 ms
54,596 KB
testcase_15 AC 426 ms
73,536 KB
testcase_16 AC 10 ms
6,656 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 27 ms
11,796 KB
testcase_19 AC 79 ms
22,824 KB
testcase_20 AC 76 ms
22,252 KB
testcase_21 AC 3 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

// Define
using ll = long long;
using ull = unsigned long long;
using ld = long double;
template <class T> using pvector = vector<pair<T, T>>;
template <class T>
using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;
constexpr const ll dx[4] = {1, 0, -1, 0};
constexpr const ll dy[4] = {0, 1, 0, -1};
constexpr const ll MOD = 1e9 + 7;
constexpr const ll mod = 998244353;
constexpr const ll INF = 1LL << 60;
constexpr const ll inf = 1 << 30;
constexpr const char rt = '\n';
constexpr const char sp = ' ';
#define rt(i, n) (i == (ll)(n) -1 ? rt : sp)
#define len(x) ((ll)(x).size())
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define mp make_pair
#define mt make_tuple
#define pb push_back
#define eb emplace_back
#define ifn(x) if (not(x))
#define elif else if
#define elifn else ifn
#define fi first
#define se second

using graph = vector<vector<ll>>;
template <class T> using wgraph = vector<vector<ll, T>>;
bool __DIRECTED__ = true;
istream &operator>>(istream &is, graph &g) {
    ll a, b;
    is >> a >> b;
    g[a - 1].pb(b - 1);
    if (__DIRECTED__ == false) g[b - 1].pb(a - 1);
    return is;
}

template <class T> istream &operator>>(istream &is, wgraph<T> &g) {
    ll a, b;
    T c;
    is >> a >> b >> c;
    g[a - 1].pb({b - 1, c});
    if (__DIRECTED__ == false) g[b - 1].pb({a - 1, c});
    return is;
}

template <class T> bool chmax(T &a, const T &b) {
    if (a < b) {
        a = b;
        return 1;
    }
    return 0;
}
template <class T> bool chmin(T &a, const T &b) {
    if (a > b) {
        a = b;
        return 1;
    }
    return 0;
}

// Debug
#define debug(...)                                                             \
    {                                                                          \
        cerr << __LINE__ << ": " << #__VA_ARGS__ << " = ";                     \
        for (auto &&X : {__VA_ARGS__}) cerr << "[" << X << "] ";               \
        cerr << rt;                                                            \
    }

#define dump(a, h, w)                                                          \
    {                                                                          \
        cerr << __LINE__ << ": " << #a << " = [" << rt;                        \
        rep(_i, h) {                                                           \
            rep(_j, w) {                                                       \
                if (abs(a[_i][_j]) >= INF / 2 and a[_i][_j] <= -INF / 2)       \
                    cerr << '-';                                               \
                if (abs(a[_i][_j]) >= INF / 2)                                 \
                    cerr << "∞" << sp;                                         \
                else                                                           \
                    cerr << a[_i][_j] << sp;                                   \
            }                                                                  \
            cerr << rt;                                                        \
        }                                                                      \
        cerr << "]" << rt;                                                     \
    }

#define vdump(a, n)                                                            \
    {                                                                          \
        cerr << __LINE__ << ": " << #a << " = [";                              \
        rep(_i, n) {                                                           \
            if (_i) cerr << sp;                                                \
            if (abs(a[_i]) >= INF / 2 and a[_i] <= -INF / 2) cerr << '-';      \
            if (abs(a[_i]) >= INF / 2)                                         \
                cerr << "∞" << sp;                                             \
            else                                                               \
                cerr << a[_i];                                                 \
        }                                                                      \
        cerr << "]" << rt;                                                     \
    }

// Loop
#define inc(i, a, n) for (ll i = (a), _##i = (n); i <= _##i; ++i)
#define dec(i, a, n) for (ll i = (a), _##i = (n); i >= _##i; --i)
#define rep(i, n) for (ll i = 0, _##i = (n); i < _##i; ++i)
#define each(i, a) for (auto &&i : a)

// Stream
#define fout(n) cout << fixed << setprecision(n)
struct io {
    io() { cin.tie(nullptr), ios::sync_with_stdio(false); }
} io;

// Speed
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")

// Math
inline constexpr ll gcd(const ll a, const ll b) {
    return b ? gcd(b, a % b) : a;
}
inline constexpr ll lcm(const ll a, const ll b) { return a / gcd(a, b) * b; }

inline constexpr ll modulo(const ll n, const ll m = MOD) {
    ll k = n % m;
    return k + m * (k < 0);
}
inline constexpr ll chmod(ll &n, const ll m = MOD) {
    n %= m;
    return n += m * (n < 0);
}
inline constexpr ll mpow(ll a, ll n, const ll m = MOD) {
    ll r = 1;
    rep(i, 64) {
        if (n & (1LL << i)) r *= a;
        chmod(r, m);
        a *= a;
        chmod(a, m);
    }
    return r;
}
inline ll inv(const ll n, const ll m = MOD) {
    ll a = n, b = m, x = 1, y = 0;
    while (b) {
        ll t = a / b;
        a -= t * b;
        swap(a, b);
        x -= t * y;
        swap(x, y);
    }
    return modulo(x, m);
}

struct SCC {
    ll num, new_num;
    vector<vector<ll>> graph;
    vector<vector<ll>> rgraph;
    vector<vector<ll>> new_graph;
    vector<ll> in_count;
    vector<ll> new_in_count;
    vector<ll> tp_index;
    vector<ll> nodes;
    vector<ll> used;

    SCC(ll n)
        : num(n), graph(n), rgraph(n), in_count(n), tp_index(n), used(n) {}
    void add_edge(ll from, ll to) {
        graph[from].push_back(to);
        rgraph[to].push_back(from);
        in_count[to]++;
    }
    void new_add_edge(ll from, ll to) {
        ll f = tp_index[from], t = tp_index[to];
        if (f == t) return;
        new_graph[f].push_back(t);
        new_in_count[t]++;
    }
    void dfs(ll pos) {
        used[pos] = true;
        each(i, graph[pos]) if (!used[i]) dfs(i);
        nodes.push_back(pos);
    }
    void rdfs(ll pos, ll k) {
        used[pos] = true;
        tp_index[pos] = k;
        each(i, rgraph[pos]) if (!used[i]) rdfs(i, k);
    }
    ll scc() {
        fill(all(used), false);
        nodes.clear();
        rep(i, num) if (!used[i]) dfs(i);
        reverse(all(nodes));
        fill(all(used), false);
        ll k = 0;
        each(i, nodes) if (!used[i]) rdfs(i, k++);
        new_graph.resize(k), new_in_count.resize(k);
        build_new_graph();
        return new_num = k;
    }
    void build_new_graph() { rep(i, num) each(j, graph[i]) new_add_edge(i, j); }
};

struct SAT {
    ll n;
    SCC scc;
    vector<bool> result;

    SAT(ll n) : n(n), scc(2 * n), result(2 * n) {}
    ll inverse(ll x) { return x >= n ? x - n : x + n; }
    void addliteral(ll a, ll b, bool a_inv = false, bool b_inv = false) {
        if (a_inv) a = inverse(a);
        if (b_inv) b = inverse(b);
        scc.add_edge(inverse(a), b);
        scc.add_edge(inverse(b), a);
    }
    bool calc() {
        scc.scc();
        for (ll i = 0; i < n; i++) {
            if (scc.tp_index[i] > scc.tp_index[n + i]) {
                result[i] = true;
                result[n + i] = false;
            } else if (scc.tp_index[i] == scc.tp_index[n + i]) {
                return false;
            } else {
                result[n + i] = true;
                result[i] = false;
            }
        }
        return true;
    }
    bool val(ll x) { return result[x]; }
};

signed main() {
    ll N;
    cin >> N;
    ll S[N], T[N], U[N];
    rep(i, N) cin >> S[i], S[i]--;
    rep(i, N) cin >> T[i], T[i]--;
    rep(i, N) cin >> U[i];
    SAT sat(N * N);
    rep(i, N) rep(j, N) {
        sat.addliteral(N * S[i] + j, N * j + T[i], U[i] & 1, U[i] & 2);
    }
    if (sat.calc()) {
        rep(i, N) rep(j, N) cout << sat.val(i * N + j) << rt(j, N);
    } else {
        cout << -1 << rt;
    }
}
0