結果
問題 | No.117 組み合わせの数 |
ユーザー | hinamimi |
提出日時 | 2020-07-24 17:06:09 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,102 bytes |
コンパイル時間 | 183 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 313,036 KB |
最終ジャッジ日時 | 2024-06-25 13:59:30 |
合計ジャッジ時間 | 3,565 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ソースコード
class Factorial(): def __init__(self, mod=10**9 + 7): self.mod = mod self._factorial = [1] self._size = 1 self._factorial_inv = [1] self._size_inv = 1 def __call__(self, n): return self.fact(n) def fact(self, n): ''' n! % mod ''' if n >= self.mod: return 0 self._make(n) return self._factorial[n] def _make(self, n): if n >= self.mod: n = self.mod if self._size < n+1: for i in range(self._size, n+1): self._factorial.append(self._factorial[i-1]*i % self.mod) self._size = n+1 def fact_inv(self, n): ''' n!^-1 % mod ''' if n >= self.mod: raise ValueError('Modinv is not exist! arg={}'.format(n)) if self._size_inv < n+1: self._factorial_inv += [-1] * (n+1-self._size_inv) self._size_inv = n+1 if self._factorial_inv[n] == -1: self._factorial_inv[n] = self.modinv(self.fact(n)) return self._factorial_inv[n] def _make_inv(self, n, r=2): if n >= self.mod: n = self.mod - 1 if self._size_inv < n+1: self._factorial_inv += [-1] * (n+1-self._size_inv) self._size_inv = n+1 self._factorial_inv[n] = self.modinv(self.fact(n)) for i in range(n, r, -1): self._factorial_inv[i-1] = self._factorial_inv[i]*i % self.mod @staticmethod def xgcd(a, b): ''' Return (gcd(a, b), x, y) such that a*x + b*y = gcd(a, b) ''' x0, x1, y0, y1 = 0, 1, 1, 0 while a != 0: (q, a), b = divmod(b, a), a y0, y1 = y1, y0 - q * y1 x0, x1 = x1, x0 - q * x1 return b, x0, y0 def modinv(self, n): g, x, _ = self.xgcd(n, self.mod) if g != 1: raise ValueError('Modinv is not exist! arg={}'.format(n)) return x % self.mod def comb(self, n, r): ''' nCr % mod ''' if r > n: return 0 t = self(n)*self.fact_inv(n-r) % self.mod return t*self.fact_inv(r) % self.mod def comb_(self, n, r): ''' nCr % mod when r is not large and n is too large ''' c = 1 for i in range(1, r+1): c *= (n-i+1) * self.fact_inv(i) c %= self.mod return c def comb_with_repetition(self, n, r): ''' nHr % mod ''' t = self(n+r-1)*self.fact_inv(n-1) % self.mod return t*self.fact_inv(r) % self.mod def perm(self, n, r): ''' nPr % mod ''' if r > n: return 0 return self(n)*self.fact_inv(n-r) % self.mod fact = Factorial() fact._make(10**7) fact._make_inv(10**7) P = fact.perm C = fact.comb H = fact.comb_with_repetition n = int(input()) for _ in range(n): q, n, r = input().replace('(', ',').replace(')', '').split(',') n, r = int(n), int(r) if q == 'P': print(P(n, r)) elif q == 'C': print(C(n, r)) else: print(H(n, r))