結果
| 問題 |
No.1138 No Bingo!
|
| ユーザー |
leafirby
|
| 提出日時 | 2020-07-26 23:39:33 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,380 ms / 3,000 ms |
| コード長 | 4,273 bytes |
| コンパイル時間 | 3,664 ms |
| コンパイル使用メモリ | 207,776 KB |
| 最終ジャッジ日時 | 2025-01-12 06:35:24 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 30 |
ソースコード
#include <bits/stdc++.h>
/*#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/cpp_int.hpp>
*/#pragma GCC target("avx")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
using namespace std;
/*namespace mp = boost::multiprecision;
using Bint = mp::cpp_int;
using Real = mp::number<mp::cpp_dec_float<1024>>;
*/#define lli long long int
#define uli unsigned long long int
#define INF 999999999999
#define rep(i,m,n) for(lli i = m;i < n;i++)
#define rrep(i,m,n) for(lli i=m-1;i>=n;i--)
#define pb(n) push_back(n)
#define UE(N) N.erase(unique(N.begin(),N.end()),N.end());
#define Sort(n) sort(n.begin(), n.end())
#define Rev(n) reverse(n.begin(),n.end())
#define Out(S) cout << S << endl
#define NeOut(S) cout << S
#define HpOut(S) cout << setprecision(50) << S << endl
#define Vec(K,L,N,S) vector<L> K(N,S)
#define DV(K,L,N,M,S) vector<vector<L>> K(N,vector<L>(M,S))
#define TV(K,L,N,M,R,S) vector<vector<vector<L>>> K(N,vector<vector<L>>(M,vector<L>(R,S)))
#define pint pair<lli,lli>
#define paf(L,R) pair<L,R>
#define mod 998244353
#define MAX 10000000
#define ALL(a) a.begin(),a.end()
#define chmax(a, b) a = (((a)<(b)) ? (b) : (a))
#define chmin(a, b) a = (((a)>(b)) ? (b) : (a))
long long modinv(long long a, long long m) {
long long b = m, u = 1, v = 0;
while (b) {
long long t = a/b;
a -= t*b; swap(a, b);
u -= t*v; swap(u, v);
}
u %= m;
if (u < 0) u += m;
return u;
}
long long modpow(long long n, long long k, long long m) {
if (!k) return 1;
else if(k & 1)return modpow(n,k-1,m)*n%m;
else{
long long temp=modpow(n,k/2,m);
return temp*temp%m;
}
}
const long long PR = 3; // to be set appropriately
void trans(vector<long long> &v, bool inv = false) {
int n = (int)v.size();
for (int i = 0, j = 1; j < n-1; j++) {
for (int k = n>>1; k > (i ^= k); k >>= 1);
if (i > j) swap(v[i], v[j]);
}
for (int t = 2; t <= n; t <<= 1) {
long long bw = modpow(PR, (mod-1)/t, mod);
if (inv) bw = modinv(bw, mod);
for (int i = 0; i < n; i += t) {
long long w = 1;
for (int j = 0; j < t/2; ++j) {
int j1 = i + j, j2 = i + j + t/2;
long long c1 = v[j1], c2 = v[j2] * w % mod;
v[j1] = c1 + c2;
v[j2] = c1 - c2 + mod;
while (v[j1] >= mod) v[j1] -= mod;
while (v[j2] >= mod) v[j2] -= mod;
w = w * bw % mod;
}
}
}
if (inv) {
long long inv_n = modinv(n, mod);
for (int i = 0; i < n; ++i) v[i] = v[i] * inv_n % mod;
}
}
vector<long long> NTT(vector<long long> A, vector<long long> B) {
int size_a = 1; while (size_a < A.size()) size_a <<= 1;
int size_b = 1; while (size_b < B.size()) size_b <<= 1;
int size_fft = max(size_a, size_b) << 1;
vector<long long> cA(size_fft, 0), cB(size_fft, 0), cC(size_fft, 0);
for (int i = 0; i < A.size(); ++i) cA[i] = A[i];
for (int i = 0; i < B.size(); ++i) cB[i] = B[i];
trans(cA); trans(cB);
for (int i = 0; i < size_fft; ++i) cC[i] = cA[i] * cB[i] % mod;
trans(cC, true);
vector<long long> res((int)A.size() + (int)B.size() - 1);
for (int i = 0; i < res.size(); ++i) res[i] = cC[i];
return res;
}
vector<long long> mod_pow_poly(long long N, vector<long long> &res){
if (!N) return {1};
else if(N & 1)return NTT(mod_pow_poly(N-1, res), res);
else{
vector<long long> temp=mod_pow_poly(N/2, res);
return NTT(temp, temp);
}
}
vector<long long> solve(long long N){
vector<long long> res = {2, 4, 1}, temp = {1};
if(N & 1) temp = {1, 1};
N /= 2;
return NTT(mod_pow_poly(N, res), temp);
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
long long N, M,sum=0;
cin >> N;
assert(1 <= N && N <= 200000);
vector<long long> fact(N+1,1);
rep(i,2,N+1)fact[i]=fact[i-1]*i%mod;
rep(i,2,N+1)sum=(sum+mod+(long long)pow(-1,i%2)*(fact[N]*modinv(fact[i],mod)%mod))%mod;
sum = (sum << 1) % mod;
auto dp = solve(N);
rep(i,0,N+1) {
if((N - i) & 1) sum = (sum + dp[i] * fact[i] % mod) % mod;
else sum = (sum + mod - dp[i] * fact[i] % mod) % mod;
}
Out((fact[N] - sum + mod) % mod);
}
leafirby