結果

問題 No.1141 田グリッド
ユーザー Shuz*Shuz*
提出日時 2020-07-31 21:51:11
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 8,546 bytes
コンパイル時間 1,771 ms
コンパイル使用メモリ 185,436 KB
実行使用メモリ 8,448 KB
最終ジャッジ日時 2024-07-06 17:42:33
合計ジャッジ時間 6,832 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 1 ms
6,944 KB
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 AC 2 ms
6,944 KB
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
testcase_30 RE -
testcase_31 RE -
testcase_32 RE -
testcase_33 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

// Define
using ll = long long;
using ull = unsigned long long;
using ld = long double;
template <class T> using pvector = vector<pair<T, T>>;
template <class T>
using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;
constexpr const ll dx[4] = {1, 0, -1, 0};
constexpr const ll dy[4] = {0, 1, 0, -1};
constexpr const ll MOD = 1e9 + 7;
constexpr const ll mod = 998244353;
constexpr const ll INF = 1LL << 60;
constexpr const ll inf = 1 << 30;
constexpr const char rt = '\n';
constexpr const char sp = ' ';
#define rt(i, n) (i == (ll)(n) -1 ? rt : sp)
#define len(x) ((ll)(x).size())
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define mp make_pair
#define mt make_tuple
#define pb push_back
#define eb emplace_back
#define ifn(x) if (not(x))
#define elif else if
#define elifn else ifn
#define fi first
#define se second
#define uniq(x) (sort(all(x)), (x).erase(unique(all(x)), (x).end()))

using graph = vector<vector<ll>>;
template <class T> using wgraph = vector<vector<ll, T>>;
bool __DIRECTED__ = true;
istream &operator>>(istream &is, graph &g) {
    ll a, b;
    is >> a >> b;
    g[a - 1].pb(b - 1);
    if (__DIRECTED__ == false) g[b - 1].pb(a - 1);
    return is;
}
template <class T> istream &operator>>(istream &is, wgraph<T> &g) {
    ll a, b;
    T c;
    is >> a >> b >> c;
    g[a - 1].pb({b - 1, c});
    if (__DIRECTED__ == false) g[b - 1].pb({a - 1, c});
    return is;
}

template <class T> bool chmax(T &a, const T &b) {
    if (a < b) {
        a = b;
        return 1;
    }
    return 0;
}
template <class T> bool chmin(T &a, const T &b) {
    if (a > b) {
        a = b;
        return 1;
    }
    return 0;
}

// Debug
#define debug(...)                                                             \
    {                                                                          \
        cerr << __LINE__ << ": " << #__VA_ARGS__ << " = ";                     \
        for (auto &&X : {__VA_ARGS__}) cerr << "[" << X << "] ";               \
        cerr << rt;                                                            \
    }

#define dump(a, h, w)                                                          \
    {                                                                          \
        cerr << __LINE__ << ": " << #a << " = [" << rt;                        \
        rep(_i, h) {                                                           \
            rep(_j, w) {                                                       \
                if (abs(a[_i][_j]) >= INF / 2 and a[_i][_j] <= -INF / 2)       \
                    cerr << '-';                                               \
                if (abs(a[_i][_j]) >= INF / 2)                                 \
                    cerr << "∞" << sp;                                         \
                else                                                           \
                    cerr << a[_i][_j] << sp;                                   \
            }                                                                  \
            cerr << rt;                                                        \
        }                                                                      \
        cerr << "]" << rt;                                                     \
    }

#define vdump(a, n)                                                            \
    {                                                                          \
        cerr << __LINE__ << ": " << #a << " = [";                              \
        rep(_i, n) {                                                           \
            if (_i) cerr << sp;                                                \
            if (abs(a[_i]) >= INF / 2 and a[_i] <= -INF / 2) cerr << '-';      \
            if (abs(a[_i]) >= INF / 2)                                         \
                cerr << "∞" << sp;                                             \
            else                                                               \
                cerr << a[_i];                                                 \
        }                                                                      \
        cerr << "]" << rt;                                                     \
    }

// Loop
#define inc(i, a, n) for (ll i = (a), _##i = (n); i <= _##i; ++i)
#define dec(i, a, n) for (ll i = (a), _##i = (n); i >= _##i; --i)
#define rep(i, n) for (ll i = 0, _##i = (n); i < _##i; ++i)
#define each(i, a) for (auto &&i : a)

// Stream
#define fout(n) cout << fixed << setprecision(n)
struct io {
    io() { cin.tie(nullptr), ios::sync_with_stdio(false); }
} io;

// Speed
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target(                                                            \
    "sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native,arch=skylake-avx512")

// Math
inline constexpr ll gcd(const ll a, const ll b) {
    return b ? gcd(b, a % b) : a;
}
inline constexpr ll lcm(const ll a, const ll b) { return a / gcd(a, b) * b; }

inline constexpr ll modulo(const ll n, const ll m = MOD) {
    ll k = n % m;
    return k + m * (k < 0);
}
inline constexpr ll chmod(ll &n, const ll m = MOD) {
    n %= m;
    return n += m * (n < 0);
}
inline constexpr ll mpow(ll a, ll n, const ll m = MOD) {
    ll r = 1;
    rep(i, 64) {
        if (n & (1LL << i)) r *= a;
        chmod(r, m);
        a *= a;
        chmod(a, m);
    }
    return r;
}
inline ll inv(const ll n, const ll m = MOD) {
    ll a = n, b = m, x = 1, y = 0;
    while (b) {
        ll t = a / b;
        a -= t * b;
        swap(a, b);
        x -= t * y;
        swap(x, y);
    }
    return modulo(x, m);
}

const ll mo = 1e9 + 7;
struct mint {
    ll x;
    mint(ll x = 0) : x((x % mo + mo) % mo) {}
    mint operator-() const { return mint(-x); }
    mint &operator+=(const mint &a) {
        if ((x += a.x) >= mo) x -= mo;
        return *this;
    }
    mint &operator-=(const mint &a) {
        if ((x += mo - a.x) >= mo) x -= mo;
        return *this;
    }
    mint &operator*=(const mint &a) {
        (x *= a.x) %= mo;
        return *this;
    }
    mint operator+(const mint &a) const { return mint(*this) += a; }
    mint operator-(const mint &a) const { return mint(*this) -= a; }
    mint operator*(const mint &a) const { return mint(*this) *= a; }
    bool operator==(const mint &a) const { return x == a.x; }
    bool operator!=(const mint &a) const { return x != a.x; }
    bool operator<=(const mint &a) { return x <= a.x; }
    bool operator<(const mint &a) { return x < a.x; }
    friend ll abs(const mint &a) { return a.x; }

    friend mint pow(const mint &a, ll n) {
        if (!n) return 1;
        mint b = pow(a, n >> 1);
        b *= b;
        if (n & 1) b *= a;
        return b;
    }

    mint inv() const { return pow(*this, mo - 2); }
    mint &operator/=(mint a) { return (*this) *= a.inv(); }
    mint operator/(mint a) const { return mint(*this) /= a; }

    friend istream &operator>>(istream &is, mint &a) {
        ll t;
        is >> t;
        a = mint(t);
        return is;
    }
    friend ostream &operator<<(ostream &os, mint a) {
        os << a.x;
        return os;
    }
};
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wliteral-suffix"
mint operator"" M(const ull n) { return mint(n); }
#pragma GCC diagnostic pop

signed main() {
    ll H, W;
    cin >> H >> W;
    ll A[H][W];
    rep(i, H) rep(j, W) cin >> A[i][j];
    ll Q;
    cin >> Q;
    ll X[Q], Y[Q];
    rep(i, Q) cin >> X[i] >> Y[i];

    mint S[4][H][W], res[Q];
    rep(i, Q) res[i] = 1;
    rep(i, H) rep(j, W) rep(k, 4) S[k][i][j] = A[i][j];

    rep(i, H - 1) rep(j, W) S[0][i + 1][j] *= S[0][i][j];
    rep(i, H) rep(j, W - 1) S[0][i][j + 1] *= S[0][i][j];

    rep(i, H - 1) rep(j, W) S[1][i + 1][j] *= S[1][i][j];
    rep(i, H) dec(j, W - 1, 1) S[1][i][j - 1] *= S[1][i][j];

    dec(i, H - 1, 1) rep(j, W) S[2][i - 1][j] *= S[2][i][j];
    rep(i, H) rep(j, W - 1) S[2][i][j + 1] *= S[2][i][j];

    dec(i, H - 1, 1) rep(j, W) S[3][i - 1][j] *= S[3][i][j];
    rep(i, H) dec(j, W - 1, 1) S[3][i][j - 1] *= S[3][i][j];

    rep(i, Q) {
        mint res = 1;
        if (X[i] != 1 and Y[i] != 1) res *= S[0][X[i] - 2][Y[i] - 2];
        if (X[i] != 1 and Y[i] != W) res *= S[1][X[i] - 2][Y[i]];
        if (X[i] != H and Y[i] != 1) res *= S[2][X[i]][Y[i] - 2];
        if (X[i] != H and Y[i] != W) res *= S[3][X[i]][Y[i]];
        cout << res << rt;
    }
}
0