結果
問題 | No.132 点と平面との距離 |
ユーザー | heno239 |
提出日時 | 2020-08-05 14:57:10 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 84 ms / 5,000 ms |
コード長 | 3,400 bytes |
コンパイル時間 | 1,068 ms |
コンパイル使用メモリ | 114,616 KB |
実行使用メモリ | 20,040 KB |
最終ジャッジ日時 | 2024-09-17 00:15:32 |
合計ジャッジ時間 | 1,698 ms |
ジャッジサーバーID (参考情報) |
judge6 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 11 ms
20,040 KB |
testcase_01 | AC | 30 ms
20,036 KB |
testcase_02 | AC | 84 ms
20,032 KB |
ソースコード
#include<iostream> #include<string> #include<cstdio> #include<vector> #include<cmath> #include<algorithm> #include<functional> #include<iomanip> #include<queue> #include<ciso646> #include<random> #include<map> #include<set> #include<bitset> #include<stack> #include<unordered_map> #include<utility> #include<cassert> #include<complex> #include<numeric> using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; constexpr ll mod = 1000000007; const ll INF = mod * mod; typedef pair<int, int>P; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i<n;i++) #define per(i,n) for(int i=n-1;i>=0;i--) #define Rep(i,sta,n) for(int i=sta;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair<ll, ll> LP; typedef long double ld; typedef pair<ld, ld> LDP; const ld eps = 1e-12; const ld pi = acos(-1.0); ll mod_pow(ll x, ll n, ll m) { ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } struct modint { ll n; modint() :n(0) { ; } modint(ll m) :n(m) { if (n >= mod)n %= mod; else if (n < 0)n = (n % mod + mod) % mod; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, int n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } const int max_n = 1 << 20; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } int dx[4] = { 1,0,-1,0 }; int dy[4] = { 0,1,0,-1 }; void solve(){ int n; cin >> n; ld px, py, pz; cin >> px >> py >> pz; vector<ld> x(n), y(n), z(n); rep(i, n)cin >> x[i] >> y[i] >> z[i]; ld ans = 0; rep(i, n) { Rep(j, i + 1, n) { Rep(k, j + 1, n) { ld x1 = x[j] - x[i]; ld y1 = y[j] - y[i]; ld z1 = z[j] - z[i]; ld x2 = x[k] - x[i]; ld y2 = y[k] - y[i]; ld z2 = z[k] - z[i]; ld nx = y1 * z2 - y2 * z1; ld ny = z1 * x2 - z2 * x1; ld nz = x1 * y2 - x2 * y1; ld d = -x[i] * nx - y[i] * ny - z[i] * nz; ld dist = abs(nx * px + ny * py + nz * pz + d) / sqrtl(nx * nx + ny * ny + nz * nz); ans += dist; } } } cout << ans << "\n"; } signed main() { ios::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(10); //init_f(); // int t; cin >> t; rep(i, t) solve(); return 0; }