結果
問題 | No.931 Multiplicative Convolution |
ユーザー |
![]() |
提出日時 | 2020-08-10 02:03:02 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 231 ms / 2,000 ms |
コード長 | 4,934 bytes |
コンパイル時間 | 1,284 ms |
コンパイル使用メモリ | 122,176 KB |
実行使用メモリ | 35,484 KB |
最終ジャッジ日時 | 2024-10-06 00:51:28 |
合計ジャッジ時間 | 3,933 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 14 |
コンパイルメッセージ
main.cpp: In function 'void solve()': main.cpp:197:23: warning: 'r' may be used uninitialized [-Wmaybe-uninitialized] 197 | t = t * r % p; | ~~^~~ main.cpp:185:13: note: 'r' was declared here 185 | int r; | ^
ソースコード
#include<iostream>#include<string>#include<cstdio>#include<vector>#include<cmath>#include<algorithm>#include<functional>#include<iomanip>#include<queue>#include<ciso646>#include<random>#include<map>#include<set>#include<bitset>#include<stack>#include<unordered_map>#include<utility>#include<cassert>#include<complex>#include<numeric>using namespace std;//#define int long longtypedef long long ll;typedef unsigned long long ul;typedef unsigned int ui;constexpr ll mod = 998244353;const ll INF = mod * mod;typedef pair<int, int>P;#define stop char nyaa;cin>>nyaa;#define rep(i,n) for(int i=0;i<n;i++)#define per(i,n) for(int i=n-1;i>=0;i--)#define Rep(i,sta,n) for(int i=sta;i<n;i++)#define rep1(i,n) for(int i=1;i<=n;i++)#define per1(i,n) for(int i=n;i>=1;i--)#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)#define all(v) (v).begin(),(v).end()typedef pair<ll, ll> LP;typedef double ld;typedef pair<ld, ld> LDP;const ld eps = 1e-12;const ld pi = acos(-1.0);ll mod_pow(ll x, ll n, ll m=mod) {ll res = 1;while (n) {if (n & 1)res = res * x % m;x = x * x % m; n >>= 1;}return res;}struct modint {ll n;modint() :n(0) { ; }modint(ll m) :n(m) {if (n >= mod)n %= mod;else if (n < 0)n = (n % mod + mod) % mod;}operator int() { return n; }};bool operator==(modint a, modint b) { return a.n == b.n; }modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }modint operator+(modint a, modint b) { return a += b; }modint operator-(modint a, modint b) { return a -= b; }modint operator*(modint a, modint b) { return a *= b; }modint operator^(modint a, ll n) {if (n == 0)return modint(1);modint res = (a * a) ^ (n / 2);if (n % 2)res = res * a;return res;}ll inv(ll a, ll p) {return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);}modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }const int max_n = 1 << 20;modint fact[max_n], factinv[max_n];void init_f() {fact[0] = modint(1);for (int i = 0; i < max_n - 1; i++) {fact[i + 1] = fact[i] * modint(i + 1);}factinv[max_n - 1] = modint(1) / fact[max_n - 1];for (int i = max_n - 2; i >= 0; i--) {factinv[i] = factinv[i + 1] * modint(i + 1);}}modint comb(int a, int b) {if (a < 0 || b < 0 || a < b)return 0;return fact[a] * factinv[b] * factinv[a - b];}ll gcd(ll a, ll b) {if (a < b)swap(a, b);while (b) {ll r = a % b; a = b; b = r;}return a;}ll mod_inverse(ll a) {return mod_pow(a, mod - 2,mod);}ll root[24], invroot[24];void init() {rep(i, 24) {int n = (1 << i);root[i] = mod_pow(3, (mod - 1) / n,mod);invroot[i] = mod_inverse(root[i]);}}typedef vector <ll> poly;poly dft(poly f, bool inverse = false) {int n = f.size(); int i, j, k;//bit左右反転for (i = 0, j = 1; j < n - 1; j++) {for (k = n >> 1; k > (i ^= k); k >>= 1);if (i > j)swap(f[i], f[j]);}for (int j = 1; (1 << j) <= n; j++) {int m = 1 << j;ll zeta = root[j];if (inverse)zeta = invroot[j];for (i = 0; i < n; i += m) {ll powzeta = 1;for (k = i; k < i + m / 2; k++) {ll t1 = f[k], t2 = powzeta * f[k + m / 2] % mod;f[k] = t1 + t2; while (f[k] >= mod)f[k] -= mod;f[k + m / 2] = t1 - t2 + mod; while (f[k + m / 2] >= mod)f[k + m / 2] -= mod;(powzeta *= zeta) %= mod;}}}if (inverse) {ll rv = mod_inverse(n);for (i = 0; i < n; i++) {(f[i] *= rv) %= mod;}}return f;}poly multiply(poly g, poly h) {int n = 1;int pi = 0, qi = 0;rep(i, g.size())if (g[i])pi = i;rep(i, h.size())if (h[i])qi = i;int sz = pi + qi + 2;while (n < sz)n *= 2;g.resize(n); h.resize(n);/*while (g.size() < n) {g.push_back(0);}while (h.size() < n) {h.push_back(0);}*/poly gg = dft(g);poly hh = dft(h);poly ff; ff.resize(n);rep(i, n) {ff[i] = gg[i] * hh[i] % mod;}return dft(ff, true);}ll p;bool isr(int r) {int t = 1;vector<int> cnt(p);rep(x, p - 1) {cnt[t]++;t = t * r % p;}rep1(i, p-1) {if (cnt[i] != 1)return false;}return true;}void solve() {init();cin >> p;int r;rep1(i, p-1) {if (isr(i)) {r = i; break;}}vector<int> trans(p);vector<ll> val(p);trans[1] = 0;int t = 1;val[0] = 1;rep1(i, p - 2) {t = t * r % p;trans[t] = i;val[i] = t;}poly a(p),b(p);rep1(i, p - 1)cin >> a[trans[i]];rep1(i, p - 1)cin >> b[trans[i]];vector<modint> ans(p);poly c = multiply(a, b);rep(i, c.size()) {ans[val[i%(p-1)]] += c[i];}rep1(i, p - 1) {if (i > 1)cout << " ";cout << ans[i];}cout << "\n";}signed main() {ios::sync_with_stdio(false);cin.tie(0);//cout << fixed << setprecision(10);//init_f();//expr();//int t; cin >> t; rep(i, t)solve();return 0;}