結果
| 問題 |
No.1141 田グリッド
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-08-10 09:03:50 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,159 bytes |
| コンパイル時間 | 2,859 ms |
| コンパイル使用メモリ | 201,364 KB |
| 最終ジャッジ日時 | 2025-01-12 19:35:10 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 21 WA * 10 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using P = pair<ll, ll>;
using Pld = pair<ld, ld>;
using Vec = vector<ll>;
using VecP = vector<P>;
using VecB = vector<bool>;
using VecC = vector<char>;
using VecD = vector<ld>;
using VecS = vector<string>;
using Graph = vector<VecP>;
template <typename T>
using Vec1 = vector<T>;
template <typename T>
using Vec2 = vector<Vec1<T> >;
#define REP(i, m, n) for(ll i = (m); i < (n); ++i)
#define REPN(i, m, n) for(ll i = (m); i <= (n); ++i)
#define REPR(i, m, n) for(ll i = (m)-1; i >= (n); --i)
#define REPNR(i, m, n) for(ll i = (m); i >= (n); --i)
#define rep(i, n) REP(i, 0, n)
#define repn(i, n) REPN(i, 1, n)
#define repr(i, n) REPR(i, n, 0)
#define repnr(i, n) REPNR(i, n, 1)
#define all(s) (s).begin(), (s).end()
#define pb push_back
#define fs first
#define sc second
template <typename T>
bool chmax(T &a, const T b){if(a < b){a = b; return true;} return false;}
template <typename T>
bool chmin(T &a, const T b){if(a > b){a = b; return true;} return false;}
template <typename T>
ll pow2(const T n){return (1LL << n);}
template <typename T>
void cosp(const T n){cout << n << ' ';}
void co(void){cout << '\n';}
template <typename T>
void co(const T n){cout << n << '\n';}
template <typename T1, typename T2>
void co(pair<T1, T2> p){cout << p.fs << ' ' << p.sc << '\n';}
template <typename T>
void co(const Vec1<T> &v){for(T i : v) cosp(i); co();}
template <typename T>
void co(initializer_list<T> v){for(T i : v) cosp(i); co();}
void ce(void){cerr << '\n';}
template <typename T>
void ce(const T n){cerr << n << '\n';}
template <typename T>
void cesp(const T n){cerr << n << ' ';}
template <typename T>
void ce(initializer_list<T> v){for(T i : v) cesp(i); ce();}
void sonic(){ios::sync_with_stdio(false); cin.tie(0);}
void setp(const ll n){cout << fixed << setprecision(n);}
constexpr int INF = 1e9+1;
constexpr ll LINF = 1e18+1;
constexpr ll MOD = 1e9+7;
// constexpr ll MOD = 998244353;
constexpr ld EPS = 1e-11;
const double PI = acos(-1);
template <int mod>
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt res(1), mul(x);
while(n > 0) {
if(n & 1) res *= mul;
mul *= mul;
n >>= 1;
}
return res;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
using Mint = ModInt<MOD>;
int main(void){
ll h, w;
cin >> h >> w;
Vec2<ll> a(h, Vec(w));
rep(i, h) rep(j, w) cin >> a[i][j];
vector<Mint> x(h, 1), y(w, 1);
rep(i, h) rep(j, w) x[i] *= a[i][j];
rep(j, w) rep(i, h) y[j] *= a[i][j];
Mint sum = 1;
rep(i, h) rep(j, w) sum *= a[i][j];
ll q;
cin >> q;
rep(i, q) {
ll r, c;
cin >> r >> c;
--r, --c;
co(sum / x[r] / y[c] * a[r][c]);
}
return 0;
}