結果

問題 No.206 数の積集合を求めるクエリ
ユーザー TeruMiyakeTeruMiyake
提出日時 2020-08-10 19:57:02
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 61 ms / 7,000 ms
コード長 7,090 bytes
コンパイル時間 1,887 ms
コンパイル使用メモリ 179,524 KB
実行使用メモリ 15,980 KB
最終ジャッジ日時 2024-10-08 10:25:35
合計ジャッジ時間 5,257 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 3 ms
5,248 KB
testcase_07 AC 3 ms
5,248 KB
testcase_08 AC 3 ms
5,248 KB
testcase_09 AC 3 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 4 ms
5,248 KB
testcase_13 AC 3 ms
5,248 KB
testcase_14 AC 3 ms
5,248 KB
testcase_15 AC 3 ms
5,248 KB
testcase_16 AC 3 ms
5,248 KB
testcase_17 AC 50 ms
15,824 KB
testcase_18 AC 42 ms
15,872 KB
testcase_19 AC 51 ms
15,980 KB
testcase_20 AC 37 ms
15,872 KB
testcase_21 AC 42 ms
15,940 KB
testcase_22 AC 41 ms
15,904 KB
testcase_23 AC 47 ms
15,848 KB
testcase_24 AC 61 ms
15,832 KB
testcase_25 AC 53 ms
15,900 KB
testcase_26 AC 44 ms
15,884 KB
testcase_27 AC 39 ms
15,872 KB
testcase_28 AC 48 ms
15,772 KB
testcase_29 AC 50 ms
15,872 KB
testcase_30 AC 43 ms
15,872 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

using ll = long long;
using ld  = long double;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
const int INF=1e9+7;
const ll LINF=9223372036854775807;
const ll MOD=1e9+7;
const ld PI=acos(-1);
const ld EPS = 1e-10; //微調整用(EPSより小さいと0と判定など)

int ii() { int x; if (scanf("%d", &x)==1) return x; else return 0; }
long long il() { long long x; if (scanf("%lld", &x)==1) return x; else return 0; }
string is() { string x; cin >> x; return x; }
char ic() { char x; cin >> x; return x; }
void oi(int x) { printf("%d ", x); }
void ol(long long x) { printf("%lld ", x); }
void od_nosp(double x) { printf("%.15f", x); } // 古い問題用
void od(double x) { printf("%.15f ", x); }
// long doubleで受け取り、fをLfなどに変えて出力すると、変な数値が出る
// それをなんとかするには独自の出力を作らなければならなそう
void os(const string &s) { printf("%s ", s.c_str()); }
void oc(const char &c) { printf("%c ", c); }
#define o_map(v){cerr << #v << endl; for(const auto& xxx: v){cout << xxx.first << " " << xxx.second << "\n";}} //動作未確認
void br() { putchar('\n'); }

// #define gcd __gcd //llは受け取らない C++17~のgcdと違うので注意
// int lcm(int a, int b){return a / gcd(a, b) * b;}
#define begin_end(a) a.begin(),a.end() //sort(begin_end(vec));
#define REP(i,m,n) for(ll i=(ll)(m) ; i < (ll)(n) ; i++ )
#define DREP(i,m,n) for(ll i=(ll)(m) ; i > (ll)(n) ; i-- )
#define rep(i,n) REP(i,0,n)
#define m_p(a,b) make_pair(a,b)
#define SORT_UNIQUE(c) (sort(c.begin(),c.end()), c.resize(distance(c.begin(),unique(c.begin(),c.end()))))
#define p_b push_back
#define SZ(x) ((ll)(x).size()) //size()がunsignedなのでエラー避けに
#define endk '\n'


// coutによるpairの出力(空白区切り)
template<typename T1, typename T2> ostream& operator<<(ostream& s, const pair<T1, T2>& p) {return s << "(" << p.first << " " << p.second << ")";}
// coutによるvectorの出力(空白区切り)
template<typename T> ostream& operator<<(ostream& s, const vector<T>& v) {
  int len = v.size();
  for (int i = 0; i < len; ++i) {
    s << v[i]; if (i < len - 1) s << " "; //"\t"に変えるとTabで見やすく区切る
  }
  return s;
}
// coutによる多次元vectorの出力(空白区切り)
template<typename T> ostream& operator<<(ostream& s, const vector< vector<T> >& vv) {
  int len = vv.size();
  for (int i = 0; i < len; ++i) {
    s << vv[i] << endl;
  }
  return s;
}

//最大値、最小値の更新。更新したor等しければtrueを返す
template<typename T>
bool chmax(T& a, T b){return (a = max(a, b)) == b;}
template<typename T>
bool chmin(T& a, T b){return (a = min(a, b)) == b;}

//4近傍(上下左右) rep(i, 2) にすると右・下だけに進む
vector<int> dx_4 = {1, 0, -1, 0};
vector<int> dy_4 = {0, 1, 0, -1};

// -------- template end - //


// - library ------------- //

// 高速フーリエ変換(FFT)による畳み込み
// https://ei1333.github.io/luzhiled/snippets/math/fast-fourier-transform.html
namespace FastFourierTransform {
  using real = double;

  struct C {
    real x, y;

    C() : x(0), y(0) {}

    C(real x, real y) : x(x), y(y) {}

    inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }

    inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }

    inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }

    inline C conj() const { return C(x, -y); }
  };

  const real PI = acosl(-1);
  int base = 1;
  vector< C > rts = { {0, 0},
                     {1, 0} };
  vector< int > rev = {0, 1};


  void ensure_base(int nbase) {
    if(nbase <= base) return;
    rev.resize(1 << nbase);
    rts.resize(1 << nbase);
    for(int i = 0; i < (1 << nbase); i++) {
      rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
    }
    while(base < nbase) {
      real angle = PI * 2.0 / (1 << (base + 1));
      for(int i = 1 << (base - 1); i < (1 << base); i++) {
        rts[i << 1] = rts[i];
        real angle_i = angle * (2 * i + 1 - (1 << base));
        rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
      }
      ++base;
    }
  }

  void fft(vector< C > &a, int n) {
    assert((n & (n - 1)) == 0);
    int zeros = __builtin_ctz(n);
    ensure_base(zeros);
    int shift = base - zeros;
    for(int i = 0; i < n; i++) {
      if(i < (rev[i] >> shift)) {
        swap(a[i], a[rev[i] >> shift]);
      }
    }
    for(int k = 1; k < n; k <<= 1) {
      for(int i = 0; i < n; i += 2 * k) {
        for(int j = 0; j < k; j++) {
          C z = a[i + j + k] * rts[j + k];
          a[i + j + k] = a[i + j] - z;
          a[i + j] = a[i + j] + z;
        }
      }
    }
  }

  vector< int64_t > multiply(const vector< ll > &a, const vector< ll > &b) {
    int need = (int) a.size() + (int) b.size() - 1;
    int nbase = 1;
    while((1 << nbase) < need) nbase++;
    ensure_base(nbase);
    int sz = 1 << nbase;
    vector< C > fa(sz);
    for(int i = 0; i < sz; i++) {
      int x = (i < (int) a.size() ? a[i] : 0);
      int y = (i < (int) b.size() ? b[i] : 0);
      fa[i] = C(x, y);
    }
    fft(fa, sz);
    C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
    for(int i = 0; i <= (sz >> 1); i++) {
      int j = (sz - i) & (sz - 1);
      C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
      fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
      fa[i] = z;
    }
    for(int i = 0; i < (sz >> 1); i++) {
      C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
      C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
      fa[i] = A0 + A1 * s;
    }
    fft(fa, sz >> 1);
    vector< int64_t > ret(need);
    for(int i = 0; i < need; i++) {
      ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
    }
    return ret;
  }
};



// --------- library end - //


int main(){

  ll L, M, N;
  cin >> L >> M >> N;

  // 配列 as, bs を as[i] := 数列A に 要素i が含まれるかどうか ( 1 | 0 ) とする
  // 値は -1して 0-indexed にする
  vector<ll> as(N, 0);
  vector<ll> bs(N, 0);
  
  rep(i, L) as[il()-1] = 1;
  rep(i, M) bs[il()-1] = 1;

  // 数列B に q を加算したとき、i=j な (Ai, Bj) が両方とも1になるということは、加算する前で言えば、i-q=j な (Ai, Bj) が両方とも1になるということ
  // つまり、i-q=j となるような Ai*Bj の和を求めたい

  // このとき、Bを反転してB'し、その添字を j' とすると、j'=N-1-j のとき、Bj=B'j' となる
  // これをi-q=j に代入すると、i-q=N-1-j'⇔i+j'=N-1+q となるので、今回の問題は「i+j'=N-1+q となるような Ai*B'j' の和を求めたい」と言いかえられた

  // これは畳み込みの形なので、これをFFTを使って求める


  // bs の反転
  reverse(begin_end(bs));

  // vector<ll> cs := as, bs の畳み込み
  // cs[k] := i+j' = k となるような Ai*B'j' の和
  auto cs = FastFourierTransform::multiply(as, bs);

  ll Q = il();
  rep(v, Q) cout << cs[N-1+v] << endk;




}
0