結果
問題 | No.1166 NADA DNA |
ユーザー | yuruhiya |
提出日時 | 2020-08-14 12:25:12 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 131 ms / 3,000 ms |
コード長 | 19,633 bytes |
コンパイル時間 | 2,477 ms |
コンパイル使用メモリ | 214,696 KB |
実行使用メモリ | 13,032 KB |
最終ジャッジ日時 | 2024-10-10 11:47:20 |
合計ジャッジ時間 | 5,553 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 35 ms
6,820 KB |
testcase_04 | AC | 130 ms
11,828 KB |
testcase_05 | AC | 129 ms
12,076 KB |
testcase_06 | AC | 131 ms
11,876 KB |
testcase_07 | AC | 130 ms
11,884 KB |
testcase_08 | AC | 131 ms
12,024 KB |
testcase_09 | AC | 131 ms
12,324 KB |
testcase_10 | AC | 130 ms
12,268 KB |
testcase_11 | AC | 131 ms
11,732 KB |
testcase_12 | AC | 129 ms
12,876 KB |
testcase_13 | AC | 131 ms
11,896 KB |
testcase_14 | AC | 131 ms
12,612 KB |
testcase_15 | AC | 130 ms
12,012 KB |
testcase_16 | AC | 130 ms
12,880 KB |
testcase_17 | AC | 131 ms
12,288 KB |
testcase_18 | AC | 130 ms
12,980 KB |
testcase_19 | AC | 130 ms
13,032 KB |
testcase_20 | AC | 2 ms
6,816 KB |
testcase_21 | AC | 1 ms
6,816 KB |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> #define rep(i, n) for (int i = 0; i < (n); ++i) #define FOR(i, m, n) for (int i = (m); i < (n); ++i) #define rrep(i, n) for (int i = (n)-1; i >= 0; --i) #define rfor(i, m, n) for (int i = (m); i >= (n); --i) #define unless(c) if (!(c)) #define sz(x) ((int)(x).size()) #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() #define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r) using namespace std; using ll = long long; using LD = long double; using VB = vector<bool>; using VVB = vector<VB>; using VI = vector<int>; using VVI = vector<VI>; using VL = vector<ll>; using VVL = vector<VL>; using VS = vector<string>; using VD = vector<LD>; using PII = pair<int, int>; using VP = vector<PII>; using PLL = pair<ll, ll>; using VPL = vector<PLL>; template <class T> using PQ = priority_queue<T>; template <class T> using PQS = priority_queue<T, vector<T>, greater<T>>; constexpr int inf = 1e9; constexpr long long inf_ll = 1e18, MOD = 1000000007; constexpr long double PI = M_PI, EPS = 1e-12; // --- input --- // #ifdef _WIN32 #define getchar_unlocked _getchar_nolock #define putchar_unlocked _putchar_nolock #define fwrite_unlocked fwrite #define fflush_unlocked fflush #endif class Input { static int gc() { return getchar_unlocked(); } template <class T> static void i(T& v) { cin >> v; } static void i(char& v) { while (isspace(v = gc())) ; } static void i(bool& v) { v = in<char>() != '0'; } static void i(string& v) { v.clear(); char c; for (i(c); !isspace(c); c = gc()) v += c; } static void i(int& v) { bool neg = false; v = 0; char c; i(c); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c); c = gc()) v = v * 10 + (c - '0'); if (neg) v = -v; } static void i(long long& v) { bool neg = false; v = 0; char c; i(c); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c); c = gc()) v = v * 10 + (c - '0'); if (neg) v = -v; } static void i(double& v) { double dp = 1; bool neg = false, adp = false; v = 0; char c; i(c); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c) || c == '.'; c = gc()) { if (c == '.') adp = true; else if (adp) v += (c - '0') * (dp *= 0.1); else v = v * 10 + (c - '0'); } if (neg) v = -v; } static void i(long double& v) { long double dp = 1; bool neg = false, adp = false; v = 0; char c; i(c); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c) || c == '.'; c = gc()) { if (c == '.') adp = true; else if (adp) v += (c - '0') * (dp *= 0.1); else v = v * 10 + (c - '0'); } if (neg) v = -v; } template <class T, class U> static void i(pair<T, U>& v) { i(v.first); i(v.second); } template <class T> static void i(vector<T>& v) { for (auto& e : v) i(e); } template <size_t N = 0, class T> static void input_tuple(T& v) { if constexpr (N < tuple_size_v<T>) { i(get<N>(v)); input_tuple<N + 1>(v); } } template <class... T> static void i(tuple<T...>& v) { input_tuple(v); } struct InputV { int n, m; InputV(int _n) : n(_n), m(0) {} InputV(const pair<int, int>& nm) : n(nm.first), m(nm.second) {} template <class T> operator vector<T>() { vector<T> v(n); i(v); return v; } template <class T> operator vector<vector<T>>() { vector<vector<T>> v(n, vector<T>(m)); i(v); return v; } }; public: static string read_line() { string v; char c; for (i(c); c != '\n' && c != '\0'; c = gc()) v += c; return v; } template <class T> static T in() { T v; i(v); return v; } template <class T> operator T() const { return in<T>(); } int operator--(int) const { return in<int>() - 1; } InputV operator[](int n) const { return InputV(n); } InputV operator[](const pair<int, int>& n) const { return InputV(n); } void operator()() const {} template <class H, class... T> void operator()(H&& h, T&&... t) const { i(h); operator()(forward<T>(t)...); } private: template <template <class...> class, class...> struct Multiple; template <template <class...> class V, class Head, class... Tail> struct Multiple<V, Head, Tail...> { template <class... Args> using vec = V<vector<Head>, Args...>; using type = typename Multiple<vec, Tail...>::type; }; template <template <class...> class V> struct Multiple<V> { using type = V<>; }; template <class... T> using multiple_t = typename Multiple<tuple, T...>::type; template <size_t N = 0, class T> void in_multiple(T& t) const { if constexpr (N < tuple_size_v<T>) { auto& vec = get<N>(t); using V = typename remove_reference_t<decltype(vec)>::value_type; vec.push_back(in<V>()); in_multiple<N + 1>(t); } } public: template <class... T> auto multiple(int H) const { multiple_t<T...> res; while (H--) in_multiple(res); return res; } } in; #define input(T) Input::in<T>() #define INT input(int) #define LL input(long long) #define STR input(string) #define inputs(T, ...) \ T __VA_ARGS__; \ in(__VA_ARGS__) #define ini(...) inputs(int, __VA_ARGS__) #define inl(...) inputs(long long, __VA_ARGS__) #define ins(...) inputs(string, __VA_ARGS__) // --- output --- // struct BoolStr { const char *t, *f; BoolStr(const char* _t, const char* _f) : t(_t), f(_f) {} } Yes("Yes", "No"), yes("yes", "no"), YES("YES", "NO"), Int("1", "0"); struct DivStr { const char *d, *l; DivStr(const char* _d, const char* _l) : d(_d), l(_l) {} } spc(" ", "\n"), no_spc("", "\n"), end_line("\n", "\n"), comma(",", "\n"), no_endl(" ", ""); class Output { BoolStr B{Yes}; DivStr D{spc}; void p(int v) const { if (v < 0) putchar_unlocked('-'), v = -v; char b[10]; int i = 0; while (v) b[i++] = '0' + v % 10, v /= 10; if (!i) b[i++] = '0'; while (i--) putchar_unlocked(b[i]); } void p(long long v) const { if (v < 0) putchar_unlocked('-'), v = -v; char b[20]; int i = 0; while (v) b[i++] = '0' + v % 10, v /= 10; if (!i) b[i++] = '0'; while (i--) putchar_unlocked(b[i]); } void p(bool v) const { p(v ? B.t : B.f); } void p(char v) const { putchar_unlocked(v); } void p(const char* v) const { fwrite_unlocked(v, 1, strlen(v), stdout); } void p(double v) const { printf("%.20f", v); } void p(long double v) const { printf("%.20Lf", v); } template <class T> void p(const T& v) const { cout << v; } template <class T, class U> void p(const pair<T, U>& v) const { p(v.first); p(D.d); p(v.second); } template <class T> void p(const vector<T>& v) const { rep(i, sz(v)) { if (i) p(D.d); p(v[i]); } } template <class T> void p(const vector<vector<T>>& v) const { rep(i, sz(v)) { if (i) p(D.l); p(v[i]); } } public: Output& operator()() { p(D.l); return *this; } template <class H> Output& operator()(H&& h) { p(h); p(D.l); return *this; } template <class H, class... T> Output& operator()(H&& h, T&&... t) { p(h); p(D.d); return operator()(forward<T>(t)...); } template <class It> Output& range(const It& l, const It& r) { for (It i = l; i != r; i++) { if (i != l) p(D.d); p(*i); } p(D.l); return *this; } template <class T> Output& range(const T& a) { range(a.begin(), a.end()); return *this; } template <class... T> void exit(T&&... t) { operator()(forward<T>(t)...); std::exit(EXIT_SUCCESS); } Output& flush() { fflush_unlocked(stdout); return *this; } Output& set(const BoolStr& b) { B = b; return *this; } Output& set(const DivStr& d) { D = d; return *this; } Output& set(const char* t, const char* f) { B = BoolStr(t, f); return *this; } } out; // --- step --- // template <class T> struct Step { class It { T a, b, c; public: constexpr It() : a(T()), b(T()), c(T()) {} constexpr It(T _b, T _c, T _s) : a(_b), b(_c), c(_s) {} constexpr It& operator++() { --b; a += c; return *this; } constexpr It operator++(int) { It tmp = *this; --b; a += c; return tmp; } constexpr const T& operator*() const { return a; } constexpr const T* operator->() const { return &a; } constexpr bool operator==(const It& i) const { return b == i.b; } constexpr bool operator!=(const It& i) const { return !(b == i.b); } constexpr T start() const { return a; } constexpr T count() const { return b; } constexpr T step() const { return c; } }; constexpr Step(T b, T c, T s) : be(b, c, s) {} constexpr It begin() const { return be; } constexpr It end() const { return en; } constexpr T start() const { return be.start(); } constexpr T count() const { return be.count(); } constexpr T step() const { return be.step(); } constexpr T sum() const { return start() * count() + step() * (count() * (count() - 1) / 2); } operator vector<T>() const { return to_a(); } template <class F> void each(const F& f) const { for (T i : *this) f(i); } auto to_a() const { vector<T> res; res.reserve(count()); each([&](T i) { res.push_back(i); }); return res; } template <class F, class U = invoke_result_t<F, T>> auto map(const F& f) const { vector<U> res; res.reserve(count()); each([&](T i) { res.push_back(f(i)); }); return res; } template <class F> auto select(const F& f) const { vector<T> res; each([&](T i) { if (f(i)) res.push_back(i); }); return res; } template <class F> int count_if(const F& f) const { int res = 0; each([&](T i) { if (f(i)) ++res; }); return res; } template <class F> optional<T> find_if(const F& f) const { for (T i : *this) if (f(i)) return i; return nullopt; } template <class F> auto max_by(const F& f) const { auto v = map(f); return *max_element(v.begin(), v.end()); } template <class F> auto min_by(const F& f) const { auto v = map(f); return *min_element(v.begin(), v.end()); } template <class F> bool all_of(const F& f) const { for (T i : *this) if (!f(i)) return false; return true; } template <class F> bool any_of(const F& f) const { for (T i : *this) if (f(i)) return true; return false; } template <class F, class U = invoke_result_t<F, T>> auto sum(const F& f) const { U res = 0; each([&](T i) { res += static_cast<U>(f(i)); }); return res; } using value_type = T; using iterator = It; private: It be, en; }; template <class T> inline constexpr auto step(T a) { return Step<T>(0, a, 1); } template <class T> inline constexpr auto step(T a, T b) { return Step<T>(a, b - a, 1); } template <class T> inline constexpr auto step(T a, T b, T c) { return Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c); } // --- functions --- // inline namespace { template <class T> inline void Sort(T& a) { sort(all(a)); } template <class T> inline void RSort(T& a) { sort(rall(a)); } template <class T, class F> inline void Sort(T& a, const F& f) { sort(all(a), f); } template <class T, class F> inline void RSort(T& a, const F& f) { sort(rall(a), f); } template <class T> inline T Sorted(T a) { Sort(a); return a; } template <class T> inline T RSorted(T a) { RSort(a); return a; } template <class T, class F> inline T Sorted(T& a, const F& f) { Sort(a, f); return a; } template <class T, class F> inline T RSorted(T& a, const F& f) { RSort(a, f); return a; } template <class T, class F> inline void SortBy(T& a, const F& f) { sort(all(a), [&](const auto& x, const auto& y) { return f(x) < f(y); }); } template <class T, class F> inline void RSortBy(T& a, const F& f) { sort(rall(a), [&](const auto& x, const auto& y) { return f(x) < f(y); }); } template <class T> inline void Reverse(T& a) { reverse(all(a)); } template <class T> inline void Unique(T& a) { a.erase(unique(all(a)), a.end()); } template <class T> inline void Uniq(T& a) { Sort(a); Unique(a); } template <class T> inline void Rotate(T& a, int left) { rotate(a.begin(), a.begin() + left, a.end()); } template <class T> inline T Reversed(T a) { Reverse(a); return a; } template <class T> inline T Uniqued(T a) { Unique(a); return a; } template <class T> inline T Uniqed(T a) { Uniq(a); return a; } template <class T> inline T Rotated(T a, int left) { Rotate(a, left); return a; } template <class T> inline auto Max(const T& a) { return *max_element(all(a)); } template <class T> inline auto Min(const T& a) { return *min_element(all(a)); } template <class T> inline int MaxPos(const T& a) { return max_element(all(a)) - a.begin(); } template <class T> inline int MinPos(const T& a) { return min_element(all(a)) - a.begin(); } template <class T, class F> inline auto MaxBy(const T& a, const F& f) { return *max_element(all(a), [&](const auto& x, const auto& y) { return f(x) < f(y); }); } template <class T, class F> inline auto MinBy(const T& a, const F& f) { return *min_element(all(a), [&](const auto& x, const auto& y) { return f(x) < f(y); }); } template <class T, class U> inline int Count(const T& a, const U& v) { return count(all(a), v); } template <class T, class F> inline int CountIf(const T& a, const F& f) { return count_if(all(a), f); } template <class T, class U> inline int Find(const T& a, const U& v) { return find(all(a), v) - a.begin(); } template <class T, class F> inline int FindIf(const T& a, const F& f) { return find_if(all(a), f) - a.begin(); } template <class T, class U = typename T::value_type> inline U Sum(const T& a) { return accumulate(all(a), U()); } template <class T, class U> inline bool Includes(const T& a, const U& v) { return find(all(a), v) != a.end(); } template <class T, class F> inline auto Sum(const T& v, const F& f) { return accumulate(next(v.begin()), v.end(), f(*v.begin()), [&](auto a, auto b) { return a + f(b); }); } template <class T, class U> inline int Lower(const T& a, const U& v) { return lower_bound(all(a), v) - a.begin(); } template <class T, class U> inline int Upper(const T& a, const U& v) { return upper_bound(all(a), v) - a.begin(); } template <class T, class F> inline void RemoveIf(T& a, const F& f) { a.erase(remove_if(all(a), f), a.end()); } template <class F> inline auto Vector(size_t size, const F& f) { vector<invoke_result_t<F, size_t>> res(size); for (size_t i = 0; i < size; ++i) res[i] = f(i); return res; } template <class T> inline auto Grid(size_t h, size_t w, const T& v = T()) { return vector<vector<T>>(h, vector<T>(w, v)); } template <class T> inline auto Slice(const T& v, size_t i, size_t len) { return i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T(); } template <class T, class F> inline auto Each(const T& v, F&& f) { for (auto& i : v) f(i); } template <class T, class F> inline auto Select(const T& v, const F& f) { T res; for (const auto& e : v) if (f(e)) res.push_back(e); return res; } template <class T, class F> inline auto Map(const T& v, F&& f) { vector<invoke_result_t<F, typename T::value_type>> res(v.size()); size_t i = 0; for (const auto& e : v) res[i++] = f(e); return res; } template <class T, class F> inline auto MapIndex(const T& v, const F& f) { vector<invoke_result_t<F, size_t, typename T::value_type>> res(v.size()); size_t i = 0; for (auto it = v.begin(); it != v.end(); ++it, ++i) res[i] = f(i, *it); return res; } template <class T, class F> inline auto TrueIndex(const T& v, const F& f) { vector<size_t> res; for (size_t i = 0; i < v.size(); ++i) if (f(v[i])) res.push_back(i); return res; } template <class T, class U = typename T::value_type> inline auto Indexed(const T& v) { vector<pair<U, int>> res(v.size()); for (int i = 0; i < (int)v.size(); ++i) res[i] = make_pair(static_cast<U>(v[i]), i); return res; } inline auto operator*(string s, size_t n) { string res; for (size_t i = 0; i < n; ++i) res += s; return res; } template <class T> inline auto& operator<<(vector<T>& v, const vector<T>& v2) { v.insert(v.end(), all(v2)); return v; } template <class T> inline T Ceil(T n, T m) { return (n + m - 1) / m; } template <class T> inline T Ceil2(T n, T m) { return Ceil(n, m) * m; } template <class T> inline T Tri(T n) { return (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1); } template <class T> inline T nC2(T n) { return (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1); } template <class T> inline T Mid(const T& l, const T& r) { return l + (r - l) / 2; } template <class T> inline bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; } return false; } template <class T> inline bool chmin(T& a, const T& b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool inRange(const T& v, const T& min, const T& max) { return min <= v && v < max; } template <class T> inline bool isSquere(T n) { T s = sqrt(n); return s * s == n || (s + 1) * (s + 1) == n; } template <class T = long long> inline T BIT(int b) { return T(1) << b; } template <class T, class U = typename T::value_type> inline U Gcdv(const T& v) { return accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>); } template <class T, class U = typename T::value_type> inline U Lcmv(const T& v) { return accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>); } template <class T> inline T Pow(T a, T n) { T r = 1; while (n > 0) { if (n & 1) r *= a; a *= a; n /= 2; } return r; } template <class T> inline T Powmod(T a, T n, T m = MOD) { T r = 1; while (n > 0) { if (n & 1) r = r * a % m, n--; else a = a * a % m, n /= 2; } return r; } } // namespace // --- dump --- // #if __has_include("/home/yuruhiya/contest/library/dump.hpp") #include "/home/yuruhiya/contest/library/dump.hpp" #else #define dump(...) ((void)0) #endif // ---------------------------------------------------------------- // class UnionFind { vector<int> d; public: UnionFind(int n = 0) { init(n); } void init(int n) { d.assign(n, -1); } int root(int x) { return d[x] < 0 ? x : d[x] = root(d[x]); } bool unite(int x, int y) { x = root(x); y = root(y); if (x == y) return false; if (d[x] > d[y]) swap(x, y); d[x] += d[y]; d[y] = x; return true; } bool same(int x, int y) { return root(x) == root(y); } int size(int x) { return -d[root(x)]; } }; using Weight = long long; constexpr Weight INF = numeric_limits<Weight>::max(); struct Edge { int to; Weight cost; Edge() : to(-1), cost(-1) {} Edge(int _to, Weight _cost = 1) : to(_to), cost(_cost) {} friend bool operator>(const Edge& e1, const Edge& e2) { return e1.cost > e2.cost; } friend ostream& operator<<(ostream& os, const Edge& e) { return os << "->" << e.to << '(' << e.cost << ')'; } }; using Graph = vector<vector<Edge>>; struct Edge2 { int from, to; Weight cost; Edge2() : from(-1), to(-1), cost(0) {} Edge2(int _from, int _to, Weight _cost) : from(_from), to(_to), cost(_cost) {} friend ostream& operator<<(ostream& os, const Edge2& e) { return os << e.from << "->" << e.to << '(' << e.cost << ')'; } }; using Edges = vector<Edge2>; using Matrix = vector<vector<Weight>>; Weight Kruskal(int V, Edges& graph) { sort(graph.begin(), graph.end(), [](const Edge2& e1, const Edge2& e2) { return e1.cost < e2.cost; }); Weight res = 0; UnionFind uf(V); for (auto e : graph) { if (uf.unite(e.from, e.to)) { res += e.cost; } } return res; } int main() { int n = in, l = in; VS s = in[n]; Edges edges; rep(i, n) FOR(j, i + 1, n) { int cnt = step(l).count_if([&](int x) { return s[i][x] != s[j][x]; }); edges.emplace_back(i, j, cnt); } out(Kruskal(n, edges)); }