結果
問題 | No.1179 Quadratic Equation |
ユーザー | 👑 tute7627 |
提出日時 | 2020-08-21 21:37:39 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 19,153 bytes |
コンパイル時間 | 3,400 ms |
コンパイル使用メモリ | 244,972 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-15 05:22:40 |
合計ジャッジ時間 | 3,971 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 2 ms
6,820 KB |
testcase_13 | AC | 2 ms
6,816 KB |
ソースコード
//#define _GLIBCXX_DEBUG #include<bits/stdc++.h> using namespace std; #define endl '\n' #define lfs cout<<fixed<<setprecision(10) #define ALL(a) (a).begin(),(a).end() #define ALLR(a) (a).rbegin(),(a).rend() #define spa << " " << #define fi first #define se second #define MP make_pair #define MT make_tuple #define PB push_back #define EB emplace_back #define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++) #define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--) using ll = long long; using ld = long double; const ll MOD1 = 1e9+7; const ll MOD9 = 998244353; const ll INF = 1e18; using P = pair<ll, ll>; template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;} template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;} ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});} void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;} void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;} void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;} template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} template<typename T>void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}}; void debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++){for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}}; template<typename T>void debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout spa v[i];cout<<endl;}; template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;} ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;} vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1}; template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);} template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));} template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << " " << p.second;} template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << " ";cout<<"|"; return os;} //mt19937 mt(chrono::steady_clock::now().time_since_epoch().count()); using Real = long double; using Point = complex< Real >; const Real EPS = 1e-10, PI = acos((Real)(-1.0)); inline bool eq(Real a, Real b) { return fabs(b - a) < EPS; } inline bool eq(Point a, Point b) { return fabs(b - a) < EPS; } Point operator*(const Point &p, const Real &d) { return Point(real(p) * d, imag(p) * d); } istream &operator>>(istream &is, Point &p) { Real a, b; is >> a >> b; p = Point(a, b); return is; } ostream &operator<<(ostream &os, Point &p) { return os << fixed << setprecision(10) << p.real() << " " << p.imag(); } // 点 p を反時計回りに theta 回転 Point rotate(Real theta, const Point &p) { return Point(cos(theta) * p.real() - sin(theta) * p.imag(), sin(theta) * p.real() + cos(theta) * p.imag()); } Real radian_to_degree(Real r) { return (r * 180.0 / PI); } Real degree_to_radian(Real d) { return (d * PI / 180.0); } Real get_angle(const Point &a, const Point &b, const Point &c) { const Point v(a - b), w(c - b); Real alpha = atan2(v.imag(), v.real()), beta = atan2(w.imag(), w.real()); if(alpha > beta) swap(alpha, beta); Real theta = (beta - alpha); return min(theta, 2 * acos(-1) - theta); } Real get_angle2(const Point &a, const Point &b, const Point &c) { const Point v(b - a), w(c - b); Real alpha = atan2(v.imag(), v.real()), beta = atan2(w.imag(), w.real()); if(alpha > beta) swap(alpha, beta); Real theta = (beta - alpha); return min(theta, 2 * acos(-1) - theta); } namespace std { bool operator<(const Point &a, const Point &b) { return a.real() != b.real() ? a.real() < b.real() : a.imag() < b.imag(); } } struct Line { Point a, b; Line() = default; Line(Point a, Point b) : a(a), b(b) {} Line(Real A, Real B, Real C) // Ax + By = C { if(eq(A, 0)) a = Point(0, C / B), b = Point(1, C / B); else if(eq(B, 0)) b = Point(C / A, 0), b = Point(C / A, 1); else if(eq(C, 0)) b = Point(0, 0), b = Point(1, -A / B); else a = Point(0, C / B), b = Point(C / A, 0); } friend ostream &operator<<(ostream &os, Line &p) { return os << p.a << " to " << p.b; } friend istream &operator>>(istream &is, Line &a) { return is >> a.a >> a.b; } }; struct Segment : Line { Segment() = default; Segment(Point a, Point b) : Line(a, b) {} }; struct Circle { Point p; Real r; Circle() = default; Circle(Point p, Real r) : p(p), r(r) {} }; using Points = vector< Point >; using Polygon = vector< Point >; using Segments = vector< Segment >; using Lines = vector< Line >; using Circles = vector< Circle >; Real cross(const Point &a, const Point &b) { return real(a) * imag(b) - imag(a) * real(b); } Real dot(const Point &a, const Point &b) { return real(a) * real(b) + imag(a) * imag(b); } Line vertical_bisector(const Point &a, const Point &b){ Point tmp(imag(b - a), -real(b - a)); return Line((a + b) * 0.5,(a + b) * 0.5 + tmp); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C // 点の回転方向 int ccw(const Point &a, Point b, Point c) { b = b - a, c = c - a; if(cross(b, c) > EPS) return +1; // "COUNTER_CLOCKWISE" if(cross(b, c) < -EPS) return -1; // "CLOCKWISE" if(dot(b, c) < 0) return +2; // "ONLINE_BACK" if(norm(b) < norm(c)) return -2; // "ONLINE_FRONT" return 0; // "ON_SEGMENT" } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A // 平行判定 bool parallel(const Line &a, const Line &b) { return eq(cross(a.b - a.a, b.b - b.a), 0.0); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A // 垂直判定 bool orthogonal(const Line &a, const Line &b) { return eq(dot(a.a - a.b, b.a - b.b), 0.0); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_A // 射影 // 直線 l に p から垂線を引いた交点を求める Point projection(const Line &l, const Point &p) { double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b); return l.a + (l.a - l.b) * t; } Point projection(const Segment &l, const Point &p) { double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b); return l.a + (l.a - l.b) * t; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_B // 反射 // 直線 l を対称軸として点 p と線対称にある点を求める Point reflection(const Line &l, const Point &p) { return p + (projection(l, p) - p) * 2.0; } bool intersect(const Line &l, const Point &p) { return abs(ccw(l.a, l.b, p)) != 1; } bool intersect(const Line &l, const Line &m) { return abs(cross(l.b - l.a, m.b - m.a)) > EPS || abs(cross(l.b - l.a, m.b - l.a)) < EPS; } bool intersect(const Segment &s, const Point &p) { return ccw(s.a, s.b, p) == 0; } bool intersect(const Line &l, const Segment &s) { return cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < EPS; } Real distance(const Line &l, const Point &p); bool intersect(const Circle &c, const Line &l) { return distance(l, c.p) <= c.r + EPS; } bool intersect(const Circle &c, const Point &p) { return abs(abs(p - c.p) - c.r) < EPS; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_B bool intersect(const Segment &s, const Segment &t) { return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0; } int intersect(const Circle &c, const Segment &l) { if(norm(projection(l, c.p) - c.p) - c.r * c.r > EPS) return 0; auto d1 = abs(c.p - l.a), d2 = abs(c.p - l.b); if(d1 < c.r + EPS && d2 < c.r + EPS) return 0; if(d1 < c.r - EPS && d2 > c.r + EPS || d1 > c.r + EPS && d2 < c.r - EPS) return 1; const Point h = projection(l, c.p); if(dot(l.a - h, l.b - h) < 0) return 2; return 0; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A&lang=jp int intersect(Circle c1, Circle c2) { if(c1.r < c2.r) swap(c1, c2); Real d = abs(c1.p - c2.p); if(c1.r + c2.r < d) return 4; if(eq(c1.r + c2.r, d)) return 3; if(c1.r - c2.r < d) return 2; if(eq(c1.r - c2.r, d)) return 1; return 0; } Real distance(const Point &a, const Point &b) { return abs(a - b); } Real distance(const Line &l, const Point &p) { return abs(p - projection(l, p)); } Real distance(const Line &l, const Line &m) { return intersect(l, m) ? 0 : distance(l, m.a); } Real distance(const Segment &s, const Point &p) { Point r = projection(s, p); if(intersect(s, r)) return abs(r - p); return min(abs(s.a - p), abs(s.b - p)); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D Real distance(const Segment &a, const Segment &b) { if(intersect(a, b)) return 0; return min({distance(a, b.a), distance(a, b.b), distance(b, a.a), distance(b, a.b)}); } Real distance(const Line &l, const Segment &s) { if(intersect(l, s)) return 0; return min(distance(l, s.a), distance(l, s.b)); } Point crosspoint(const Line &l, const Line &m) { Real A = cross(l.b - l.a, m.b - m.a); Real B = cross(l.b - l.a, l.b - m.a); if(eq(abs(A), 0.0) && eq(abs(B), 0.0)) return m.a; return m.a + (m.b - m.a) * B / A; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_C Point crosspoint(const Segment &l, const Segment &m) { return crosspoint(Line(l), Line(m)); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_D pair< Point, Point > crosspoint(const Circle &c, const Line l) { Point pr = projection(l, c.p); Point e = (l.b - l.a) / abs(l.b - l.a); if(eq(distance(l, c.p), c.r)) return {pr, pr}; double base = sqrt(c.r * c.r - norm(pr - c.p)); return {pr - e * base, pr + e * base}; } pair< Point, Point > crosspoint(const Circle &c, const Segment &l) { Line aa = Line(l.a, l.b); if(intersect(c, l) == 2) return crosspoint(c, aa); auto ret = crosspoint(c, aa); if(dot(l.a - ret.first, l.b - ret.first) < 0) ret.second = ret.first; else ret.first = ret.second; return ret; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E pair< Point, Point > crosspoint(const Circle &c1, const Circle &c2) { Real d = abs(c1.p - c2.p); Real a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d)); Real t = atan2(c2.p.imag() - c1.p.imag(), c2.p.real() - c1.p.real()); Point p1 = c1.p + Point(cos(t + a) * c1.r, sin(t + a) * c1.r); Point p2 = c1.p + Point(cos(t - a) * c1.r, sin(t - a) * c1.r); return {p1, p2}; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_F // 点 p を通る円 c の接線 pair< Point, Point > tangent(const Circle &c1, const Point &p2) { return crosspoint(c1, Circle(p2, sqrt(norm(c1.p - p2) - c1.r * c1.r))); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_G // 円 c1, c2 の共通接線 Lines tangent(Circle c1, Circle c2) { Lines ret; if(c1.r < c2.r) swap(c1, c2); Real g = norm(c1.p - c2.p); if(eq(g, 0)) return ret; Point u = (c2.p - c1.p) / sqrt(g); Point v = rotate(PI * 0.5, u); for(int s : {-1, 1}) { Real h = (c1.r + s * c2.r) / sqrt(g); if(eq(1 - h * h, 0)) { ret.emplace_back(c1.p + u * c1.r, c1.p + (u + v) * c1.r); } else if(1 - h * h > 0) { Point uu = u * h, vv = v * sqrt(1 - h * h); ret.emplace_back(c1.p + (uu + vv) * c1.r, c2.p - (uu + vv) * c2.r * s); ret.emplace_back(c1.p + (uu - vv) * c1.r, c2.p - (uu - vv) * c2.r * s); } } return ret; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_B // 凸性判定 bool is_convex(const Polygon &p) { int n = (int) p.size(); for(int i = 0; i < n; i++) { if(ccw(p[(i + n - 1) % n], p[i], p[(i + 1) % n]) == -1) return false; } return true; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_A // 凸包 Polygon convex_hull(Polygon &p, bool onEdge = false) { int n = (int) p.size(), k = 0; const Real limit = onEdge ? 0 : EPS; if(n <= 2) return p; sort(p.begin(), p.end()); vector< Point > ch(2 * n); for(int i = 0; i < n; ch[k++] = p[i++]) { while(k >= 2 && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < limit) --k; } for(int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) { while(k >= t && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < limit) --k; } ch.resize(k - 1); return ch; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_C // 多角形と点の包含判定 enum { OUT, ON, IN }; int contains(const Polygon &Q, const Point &p) { bool in = false; for(int i = 0; i < Q.size(); i++) { Point a = Q[i] - p, b = Q[(i + 1) % Q.size()] - p; if(a.imag() > b.imag()) swap(a, b); if(a.imag() <= 0 && 0 < b.imag() && cross(a, b) < 0) in = !in; if(cross(a, b) == 0 && dot(a, b) <= 0) return ON; } return in ? IN : OUT; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1033 // 線分の重複除去 void merge_segments(vector< Segment > &segs) { auto merge_if_able = [](Segment &s1, const Segment &s2) { if(abs(cross(s1.b - s1.a, s2.b - s2.a)) > EPS) return false; if(ccw(s1.a, s2.a, s1.b) == 1 || ccw(s1.a, s2.a, s1.b) == -1) return false; if(ccw(s1.a, s1.b, s2.a) == -2 || ccw(s2.a, s2.b, s1.a) == -2) return false; s1 = Segment(min(s1.a, s2.a), max(s1.b, s2.b)); return true; }; for(int i = 0; i < segs.size(); i++) { if(segs[i].b < segs[i].a) swap(segs[i].a, segs[i].b); } for(int i = 0; i < segs.size(); i++) { for(int j = i + 1; j < segs.size(); j++) { if(merge_if_able(segs[i], segs[j])) { segs[j--] = segs.back(), segs.pop_back(); } } } } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1033 // 線分アレンジメント // 任意の2線分の交点を頂点としたグラフを構築する vector< vector< int > > segment_arrangement(vector< Segment > &segs, vector< Point > &ps) { vector< vector< int > > g; int N = (int) segs.size(); for(int i = 0; i < N; i++) { ps.emplace_back(segs[i].a); ps.emplace_back(segs[i].b); for(int j = i + 1; j < N; j++) { const Point p1 = segs[i].b - segs[i].a; const Point p2 = segs[j].b - segs[j].a; if(cross(p1, p2) == 0) continue; if(intersect(segs[i], segs[j])) { ps.emplace_back(crosspoint(segs[i], segs[j])); } } } sort(begin(ps), end(ps)); ps.erase(unique(begin(ps), end(ps)), end(ps)); int M = (int) ps.size(); g.resize(M); for(int i = 0; i < N; i++) { vector< int > vec; for(int j = 0; j < M; j++) { if(intersect(segs[i], ps[j])) { vec.emplace_back(j); } } for(int j = 1; j < vec.size(); j++) { g[vec[j - 1]].push_back(vec[j]); g[vec[j]].push_back(vec[j - 1]); } } return (g); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_C // 凸多角形の切断 // 直線 l.a-l.b で切断しその左側にできる凸多角形を返す Polygon convex_cut(const Polygon &U, Line l) { Polygon ret; for(int i = 0; i < U.size(); i++) { Point now = U[i], nxt = U[(i + 1) % U.size()]; if(ccw(l.a, l.b, now) != -1) ret.push_back(now); if(ccw(l.a, l.b, now) * ccw(l.a, l.b, nxt) < 0) { ret.push_back(crosspoint(Line(now, nxt), l)); } } return (ret); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A // 多角形の面積 Real area(const Polygon &p) { Real A = 0; for(int i = 0; i < p.size(); ++i) { A += cross(p[i], p[(i + 1) % p.size()]); } return A * 0.5; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_H // 円と多角形の共通部分の面積 Real area(const Polygon &p, const Circle &c) { if(p.size() < 3) return 0.0; function< Real(Circle, Point, Point) > cross_area = [&](const Circle &c, const Point &a, const Point &b) { Point va = c.p - a, vb = c.p - b; Real f = cross(va, vb), ret = 0.0; if(eq(f, 0.0)) return ret; if(max(abs(va), abs(vb)) < c.r + EPS) return f; if(distance(Segment(a, b), c.p) > c.r - EPS) return c.r * c.r * arg(vb * conj(va)); auto u = crosspoint(c, Segment(a, b)); vector< Point > tot{a, u.first, u.second, b}; for(int i = 0; i + 1 < tot.size(); i++) { ret += cross_area(c, tot[i], tot[i + 1]); } return ret; }; Real A = 0; for(int i = 0; i < p.size(); i++) { A += cross_area(c, p[i], p[(i + 1) % p.size()]); } return A; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_B // 凸多角形の直径(最遠頂点対間距離) Real convex_diameter(const Polygon &p) { int N = (int) p.size(); int is = 0, js = 0; for(int i = 1; i < N; i++) { if(p[i].imag() > p[is].imag()) is = i; if(p[i].imag() < p[js].imag()) js = i; } Real maxdis = norm(p[is] - p[js]); int maxi, maxj, i, j; i = maxi = is; j = maxj = js; do { if(cross(p[(i + 1) % N] - p[i], p[(j + 1) % N] - p[j]) >= 0) { j = (j + 1) % N; } else { i = (i + 1) % N; } if(norm(p[i] - p[j]) > maxdis) { maxdis = norm(p[i] - p[j]); maxi = i; maxj = j; } } while(i != is || j != js); return sqrt(maxdis); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_5_A // 最近点対 Real closest_pair(Points ps) { if(ps.size() <= 1) throw (0); sort(begin(ps), end(ps)); auto compare_y = [&](const Point &a, const Point &b) { return imag(a) < imag(b); }; vector< Point > beet(ps.size()); const Real INF = 1e18; function< Real(int, int) > rec = [&](int left, int right) { if(right - left <= 1) return INF; int mid = (left + right) >> 1; auto x = real(ps[mid]); auto ret = min(rec(left, mid), rec(mid, right)); inplace_merge(begin(ps) + left, begin(ps) + mid, begin(ps) + right, compare_y); int ptr = 0; for(int i = left; i < right; i++) { if(abs(real(ps[i]) - x) >= ret) continue; for(int j = 0; j < ptr; j++) { auto luz = ps[i] - beet[ptr - j - 1]; if(imag(luz) >= ret) break; ret = min(ret, abs(luz)); } beet[ptr++] = ps[i]; } return ret; }; return rec(0, (int) ps.size()); } Point convex_centroid(Polygon p,bool is_convex=false){ if(!is_convex)p=convex_hull(p); ll n=p.size(); Point ret; Real all_area=area(p); for(ll i=1;i<n-1;i++){ ret+=(p[0]+p[i]+p[i+1])*area(Polygon({p[0],p[i],p[i+1]})); } return ret/(all_area*3); } template<typename T1,typename T2, typename T3> pair<ll,pair<ld,ld>>quadratic_equation(T1 k1,T2 k2,T3 k3){ ld a=k1,b=k2,c=k3; ld eps=1e-10; if(b*b-4*a*c<-eps)return make_pair(0,make_pair(-1,-1)); ld add=b*b-4*a*c; if(add<eps)return make_pair(1,make_pair(-b/(2*a),-b/(2*a))); return make_pair(2,make_pair((-b+sqrt(add))/(2*a),(-b-sqrt(add))/(2*a))); } int main(){ cin.tie(nullptr); ios_base::sync_with_stdio(false); ll res=0,buf=0; bool judge = true; ll a,b,c;cin>>a>>b>>c; auto p=quadratic_equation(a,b,c); auto k=p.se; lfs; if(k.fi>k.se)swap(k.fi,k.se); if(p.fi==0)cout<<"imaginary"<<endl; else if(p.fi==1)cout<<k.fi<<endl; else cout<<k<<endl; return 0; }