結果
| 問題 |
No.1253 雀見椪
|
| コンテスト | |
| ユーザー |
👑 Kazun
|
| 提出日時 | 2020-08-22 04:04:39 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 279 ms / 2,000 ms |
| コード長 | 5,432 bytes |
| コンパイル時間 | 161 ms |
| コンパイル使用メモリ | 82,176 KB |
| 実行使用メモリ | 77,824 KB |
| 最終ジャッジ日時 | 2024-07-04 23:21:55 |
| 合計ジャッジ時間 | 3,959 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 14 |
ソースコード
class Fraction():
##入力定義
def __init__(self,Numerator=0,Denominator=1):
"""分数のオブジェクトを生成する.
Numerator:分子
Denominator:分母
"""
self.a=Numerator
self.b=Denominator
#表示定義
def __str__(self):
if self.b==1:
return str(self.a)
else:
return "{}/{}".format(self.a,self.b)
#四則演算定義
def __add__(self,other):
c=Fraction()
if not(isinstance(other,Fraction)):
other=Fraction.Int_to_Fraction(other)
c.a=self.a*other.b+self.b*other.a
c.b=self.b*other.b
return Fraction.__reduce(c)
def __radd__(self,other):
c=Fraction()
if not(isinstance(other,Fraction)):
other=Fraction.Int_to_Fraction(other)
c.a=self.a*other.b+self.b*other.a
c.b=self.b*other.b
return Fraction.__reduce(c)
def __sub__(self,other):
return self+(-other)
def __rsub__(self,other):
return -self+other
def __mul__(self,other):
if not(isinstance(other,Fraction)):
other=Fraction.Int_to_Fraction(other)
return Fraction.__reduce(Fraction(self.a*other.a,self.b*other.b))
def __rmul__(self,other):
if not(isinstance(other,Fraction)):
other=Fraction.Int_to_Fraction(other)
return Fraction.__reduce(Fraction(self.a*other.a,self.b*other.b))
def __floordiv__(self,other):
if other==Fraction():
raise ZeroDivisionError
H=self/other
return H.a//H.b
def __rfloordiv__(self,other):
if self==Fraction():
raise ZeroDivisionError
H=other/self
return H.a//H.b
def __truediv__(self,other):
if other==Fraction():
raise ZeroDivisionError
if not(isinstance(other,Fraction)):
other=Fraction.Int_to_Fraction(other)
return self*Fraction.__inverse(other)
def __rtruediv__(self,other):
if self==Fraction():
raise ZeroDivisionError
if not(isinstance(self,Fraction)):
self=Fraction.Int_to_Fraction(other)
return Fraction.__inverse(self)*other
def __pow__(self,other):
if other==0:
return 1
n=abs(other)
g=1
k=self
while n>0:
if n%2:
g*=k
k*=k
n>>=1
if other>0:
return g
else:
return 1/g
#丸め
def __floor__(self):
return self.a//self.b
def __ceil__(self):
return (self.a+self.b-1)//self.b
#比較演算子
def __eq__(self,other):
t=self-other
if isinstance(t,Fraction):
return t.a==0
else:
return t==0
def __nq(self,other):
return not(self==other)
def __lt__(self,other):
t=self-other
if isinstance(t,Fraction):
return t.a<0
else:
return t<0
def __le__(self,other):
return (self<other) or (self==other)
def __gt__(self,other):
return -self<-other
def __ge__(self,other):
return (other<self) or (self==other)
#その他
def ToNumber(self):
return self.a/self.b
def sign(self):
s=self.a*self.b
if s>0:return 1
elif s==0:return 0
else:return -1
def __reduce(self):
from math import gcd
g=gcd(self.a,self.b)
self.a//=g
self.b//=g
if self.b<0:
self.a*=-1
self.b*=-1
return Fraction(self.a,self.b)
def Int_to_Fraction(self):
if not(isinstance(self,Fraction)):
return Fraction(self,1)
else:return self
def __inverse(self):
if self==Fraction():
raise ZeroDivisionError
return Fraction.__reduce(Fraction(self.b,self.a))
def __pos__(self):
return self
def __neg__(self):
return Fraction(-self.a,self.b)
def __abs__(self):
return max(self,-self)
#その他
def is_unit(self):
return ((self.b)%(self.a))==0
#================================================
M=10**9+7
T=int(input())
assert 1<=T<=10**4,"Tが制約外(T={})".format(T)
H=[]
for i in range(T):
U=list(map(int,input().split()))
N=U[0]
A=(U[1]*pow(U[2],M-2,M))%M
B=(U[3]*pow(U[4],M-2,M))%M
C=(U[5]*pow(U[6],M-2,M))%M
assert 2<=N<=10**18,"第iテストケースのNが制約外(N={})".format(N)
assert 0<=U[1]<=U[2]<=10**9,"第iテストケースのグーが制約外(A_G={},B_G={})".format(U[1],U[2])
assert 0<=U[3]<=U[4]<=10**9,"第iテストケースのチョキが制約外(A_C={},B_C={})".format(U[3],U[4])
assert 0<=U[5]<=U[6]<=10**9,"第iテストケースのパーが制約外(A_P={},B_P={})".format(U[5],U[6])
assert U[2]!=0,"第iテストケースのグーの分母が0"
assert U[4]!=0,"第iテストケースのチョキの分母が0"
assert U[6]!=0,"第iテストケースのパーの分母が0"
p,q,r=Fraction(U[1],U[2]),Fraction(U[3],U[4]),Fraction(U[5],U[6])
assert p+q+r==1,"第iテストケースの確率の和が1ではない.(確率の和={})".format(p+q+r)
X=(pow(1-A,N,M)+pow(1-B,N,M)+pow(1-C,N,M))%M
Y=(pow(A,N,M)+pow(B,N,M)+pow(C,N,M))%M
H.append((1-X+2*Y)%M)
print("\n".join(map(str,H)))
Kazun