結果

問題 No.1207 グラフX
ユーザー LayCurse
提出日時 2020-08-30 13:05:57
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 123 ms / 2,000 ms
コード長 11,368 bytes
コンパイル時間 3,538 ms
コンパイル使用メモリ 215,160 KB
最終ジャッジ日時 2025-01-13 20:52:55
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 46
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
void *wmem;
char memarr[96000000];
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
template<class T, class S> inline T pow_L(T a, S b){
T res = 1;
res = 1;
for(;;){
if(b&1){
res *= a;
}
b >>= 1;
if(b==0){
break;
}
a *= a;
}
return res;
}
inline double pow_L(double a, double b){
return pow(a,b);
}
template<class S> inline void arrInsert(const int k, int &sz, S a[], const S aval){
int i;
sz++;
for(i=sz-1;i>k;i--){
a[i] = a[i-1];
}
a[k] = aval;
}
template<class S, class T> inline void arrInsert(const int k, int &sz, S a[], const S aval, T b[], const T bval){
int i;
sz++;
for(i=sz-1;i>k;i--){
a[i] = a[i-1];
}
for(i=sz-1;i>k;i--){
b[i] = b[i-1];
}
a[k] = aval;
b[k] = bval;
}
template<class S, class T, class U> inline void arrInsert(const int k, int &sz, S a[], const S aval, T b[], const T bval, U c[], const U cval){
int i;
sz++;
for(i=sz-1;i>k;i--){
a[i] = a[i-1];
}
for(i=sz-1;i>k;i--){
b[i] = b[i-1];
}
for(i=sz-1;i>k;i--){
c[i] = c[i-1];
}
a[k] = aval;
b[k] = bval;
c[k] = cval;
}
template<class S, class T, class U, class V> inline void arrInsert(const int k, int &sz, S a[], const S aval, T b[], const T bval, U c[], const U
    cval, V d[], const V dval){
int i;
sz++;
for(i=sz-1;i>k;i--){
a[i] = a[i-1];
}
for(i=sz-1;i>k;i--){
b[i] = b[i-1];
}
for(i=sz-1;i>k;i--){
c[i] = c[i-1];
}
for(i=sz-1;i>k;i--){
d[i] = d[i-1];
}
a[k] = aval;
b[k] = bval;
c[k] = cval;
d[k] = dval;
}
struct unionFind{
int *d;
int N;
int M;
inline void malloc(const int n){
d = (int*)std::malloc(n*sizeof(int));
M = n;
}
inline void malloc(const int n, const int fg){
d = (int*)std::malloc(n*sizeof(int));
M = n;
if(fg){
init(n);
}
}
inline void free(void){
std::free(d);
}
inline void walloc(const int n, void **mem=&wmem){
walloc1d(&d, n, mem);
M = n;
}
inline void walloc(const int n, const int fg, void **mem=&wmem){
walloc1d(&d, n, mem);
M = n;
if(fg){
init(n);
}
}
inline void init(const int n){
int i;
N = n;
for(i=(0);i<(n);i++){
d[i] = -1;
}
}
inline void init(void){
init(M);
}
inline int get(int a){
int t = a;
int k;
while(d[t]>=0){
t=d[t];
}
while(d[a]>=0){
k=d[a];
d[a]=t;
a=k;
}
return a;
}
inline int connect(int a, int b){
if(d[a]>=0){
a=get(a);
}
if(d[b]>=0){
b=get(b);
}
if(a==b){
return 0;
}
if(d[a] < d[b]){
d[a] += d[b];
d[b] = a;
}
else{
d[b] += d[a];
d[a] = b;
}
return 1;
}
inline int operator()(int a){
return get(a);
}
inline int operator()(int a, int b){
return connect(a,b);
}
inline int& operator[](const int a){
return d[a];
}
inline int size(int a){
a = get(a);
return -d[a];
}
inline int sizeList(int res[]){
int i;
int sz=0;
for(i=(0);i<(N);i++){
if(d[i]<0){
res[sz++] = -d[i];
}
}
return sz;
}
}
;
struct graph{
int N;
int *es;
int **edge;
void setEdge(int N__, int M, int A[], int B[], void **mem = &wmem){
int i;
N = N__;
walloc1d(&es, N, mem);
walloc1d(&edge, N, mem);
for(i=(0);i<(N);i++){
es[i] = 0;
}
for(i=(0);i<(M);i++){
es[A[i]]++;
es[B[i]]++;
}
for(i=(0);i<(N);i++){
walloc1d(&edge[i], es[i], mem);
}
for(i=(0);i<(N);i++){
es[i] = 0;
}
for(i=(0);i<(M);i++){
edge[A[i]][es[A[i]]++] = B[i];
edge[B[i]][es[B[i]]++] = A[i];
}
}
void getDist(int root, int res[], void *mem = wmem){
int i;
int j;
int k;
int*q;
int s;
int z;
walloc1d(&q, N, &mem);
for(i=(0);i<(N);i++){
res[i]=-1;
}
res[root]=0;
s=0;
z=1;
q[0]=root;
while(z){
i=q[s++];
z--;
for(j=(0);j<(es[i]);j++){
k=edge[i][j];
if(res[k]>=0){
continue;
}
res[k]=res[i]+1;
q[s+z++]=k;
}
}
}
void SubTreeSize(int root, int res[], void *mem = wmem){
int i;
int j;
int k;
int m;
int *q;
int qs = 0;
int qe = 1;
walloc1d(&q,N,&mem);
for(i=(0);i<(N);i++){
res[i] = -1;
}
res[root] = 0;
q[0] = root;
while(qs < qe){
i = q[qs++];
for(j=(0);j<(es[i]);j++){
k = edge[i][j];
if(res[k]==0){
continue;
}
res[k] = 0;
q[qe++] = k;
}
}
for(m=(N)-1;m>=(0);m--){
i = q[m];
res[i] = 1;
for(j=(0);j<(es[i]);j++){
k = edge[i][j];
res[i] += res[k];
}
}
}
}
;
int N;
int M;
int X;
int A[200000];
int B[200000];
int Z[200000];
graph g;
int sz[200000];
int dep[200000];
int main(){
wmem = memarr;
int i;
int j;
int k = 0;
unionFind uf;
Modint res = 0;
rd(N);
rd(M);
rd(X);
{
int Lj4PdHRW;
for(Lj4PdHRW=(0);Lj4PdHRW<(M);Lj4PdHRW++){
rd(A[Lj4PdHRW]);A[Lj4PdHRW] += (-1);
rd(B[Lj4PdHRW]);B[Lj4PdHRW] += (-1);
rd(Z[Lj4PdHRW]);
}
}
uf.malloc(N, 1);
for(i=(0);i<(M);i++){
if(uf(A[i],B[i])){
arrInsert(k, k, A, A[i], B, B[i], Z, Z[i]);
}
}
g.setEdge(N, N-1, A, B);
g.SubTreeSize(0, sz);
g.getDist(0, dep);
for(i=(0);i<(N-1);i++){
if(dep[A[i]] < dep[B[i]]){
swap(A[i], B[i]);
}
res += ((pow_L(Modint(X),Z[i]))) * sz[A[i]] * (N-sz[A[i]]);
}
wt_L(res);
wt_L('\n');
return 0;
}
// cLay varsion 20200813-1 [beta]
// --- original code ---
// int N, M, X, A[2d5], B[2d5], Z[2d5];
// graph g;
// int sz[2d5], dep[2d5];
// {
// int i, j, k = 0;
// unionFind uf;
// Modint res = 0;
// rd(N,M,X,(A--,B--,Z)(M));
// uf.malloc(N, 1);
// rep(i,M) if(uf(A[i],B[i])) arrInsert(k, k, A, A[i], B, B[i], Z, Z[i]);
//
// g.setEdge(N, N-1, A, B);
// g.SubTreeSize(0, sz);
// g.getDist(0, dep);
//
// rep(i,N-1){
// if(dep[A[i]] < dep[B[i]]) swap(A[i], B[i]);
// res += (Modint(X) ** Z[i]) * sz[A[i]] * (N-sz[A[i]]);
// }
//
// wt(res);
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0