結果
問題 | No.1241 Eternal Tours |
ユーザー | hitonanode |
提出日時 | 2020-09-06 12:41:46 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 15,043 bytes |
コンパイル時間 | 2,180 ms |
コンパイル使用メモリ | 128,512 KB |
実行使用メモリ | 7,128 KB |
最終ジャッジ日時 | 2024-05-06 23:52:48 |
合計ジャッジ時間 | 41,839 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 35 ms
6,940 KB |
testcase_04 | AC | 5 ms
6,940 KB |
testcase_05 | AC | 3 ms
6,944 KB |
testcase_06 | AC | 1 ms
6,944 KB |
testcase_07 | AC | 4 ms
6,940 KB |
testcase_08 | AC | 9 ms
6,944 KB |
testcase_09 | AC | 5 ms
6,940 KB |
testcase_10 | AC | 5 ms
6,944 KB |
testcase_11 | AC | 6 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 6 ms
6,940 KB |
testcase_14 | WA | - |
testcase_15 | AC | 3 ms
6,944 KB |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | AC | 68 ms
6,940 KB |
testcase_21 | AC | 437 ms
6,944 KB |
testcase_22 | WA | - |
testcase_23 | AC | 1,355 ms
6,940 KB |
testcase_24 | AC | 2 ms
6,940 KB |
testcase_25 | AC | 2 ms
6,944 KB |
testcase_26 | AC | 2 ms
6,940 KB |
testcase_27 | AC | 2 ms
6,940 KB |
testcase_28 | WA | - |
testcase_29 | AC | 54 ms
6,996 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 32 ms
6,944 KB |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | AC | 2 ms
6,940 KB |
testcase_37 | AC | 2 ms
6,948 KB |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | WA | - |
ソースコード
#include <cassert> #include <algorithm> #include <array> #include <chrono> #include <iostream> #include <set> #include <tuple> #include <vector> using namespace std; // Berlekamp-Massey 解法(与える項の数が足りず想定WA) template <int mod> struct ModInt { using lint = long long; static int get_mod() { return mod; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&](){ std::set<int> fac; int v = mod - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < mod; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).power((mod - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val; constexpr ModInt() : val(0) {} constexpr ModInt &_setval(lint v) { val = (v >= mod ? v - mod : v); return *this; } constexpr ModInt(lint v) { _setval(v % mod + mod); } explicit operator bool() const { return val != 0; } constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); } constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); } constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); } constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); } constexpr ModInt operator-() const { return ModInt()._setval(mod - val); } constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; } constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; } constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; } constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); } friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); } friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); } friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); } constexpr bool operator==(const ModInt &x) const { return val == x.val; } constexpr bool operator!=(const ModInt &x) const { return val != x.val; } bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T> friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; is >> t; x = ModInt(t); return is; } friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { os << x.val; return os; } constexpr lint power(lint n) const { lint ans = 1, tmp = this->val; while (n) { if (n & 1) ans = ans * tmp % mod; tmp = tmp * tmp % mod; n /= 2; } return ans; } constexpr ModInt pow(lint n) const { return power(n); } constexpr lint inv() const { return this->power(mod - 2); } constexpr ModInt operator^(lint n) const { return ModInt(this->power(n)); } constexpr ModInt &operator^=(lint n) { return *this = *this ^ n; } inline ModInt fac() const { static std::vector<ModInt> facs; int l0 = facs.size(); if (l0 > this->val) return facs[this->val]; facs.resize(this->val + 1); for (int i = l0; i <= this->val; i++) facs[i] = (i == 0 ? ModInt(1) : facs[i - 1] * ModInt(i)); return facs[this->val]; } ModInt doublefac() const { lint k = (this->val + 1) / 2; if (this->val & 1) return ModInt(k * 2).fac() / ModInt(2).power(k) / ModInt(k).fac(); else return ModInt(k).fac() * ModInt(2).power(k); } ModInt nCr(const ModInt &r) const { if (this->val < r.val) return ModInt(0); return this->fac() / ((*this - r).fac() * r.fac()); } }; // Integer convolution for arbitrary mod // with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class. // We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`. // input: a (size: n), b (size: m) // return: vector (size: n + m - 1) template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner = false); constexpr int nttprimes[3] = {998244353, 167772161, 469762049}; // Integer FFT (Fast Fourier Transform) for ModInt class // (Also known as Number Theoretic Transform, NTT) // is_inverse: inverse transform // ** Input size must be 2^n ** template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) { int n = a.size(); if (n == 1) return; static const int mod = MODINT::get_mod(); static const MODINT root = MODINT::get_primitive_root(); assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0); static std::vector<MODINT> w{1}, iw{1}; for (int m = w.size(); m < n / 2; m *= 2) { MODINT dw = root.power((mod - 1) / (4 * m)), dwinv = 1 / dw; w.resize(m * 2), iw.resize(m * 2); for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv; } if (!is_inverse) { for (int m = n; m >>= 1;) { for (int s = 0, k = 0; s < n; s += 2 * m, k++) { for (int i = s; i < s + m; i++) { #ifdef __clang__ a[i + m] *= w[k]; std::tie(a[i], a[i + m]) = std::make_pair(a[i] + a[i + m], a[i] - a[i + m]); #else MODINT x = a[i], y = a[i + m] * w[k]; a[i] = x + y, a[i + m] = x - y; #endif } } } } else { for (int m = 1; m < n; m *= 2) { for (int s = 0, k = 0; s < n; s += 2 * m, k++) { for (int i = s; i < s + m; i++) { #ifdef __clang__ std::tie(a[i], a[i + m]) = std::make_pair(a[i] + a[i + m], a[i] - a[i + m]); a[i + m] *= iw[k]; #else MODINT x = a[i], y = a[i + m]; a[i] = x + y, a[i + m] = (x - y) * iw[k]; #endif } } } int n_inv = MODINT(n).inv(); for (auto &v : a) v *= n_inv; } } template <int MOD> std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) { int sz = a.size(); assert(a.size() == b.size() and __builtin_popcount(sz) == 1); std::vector<ModInt<MOD>> ap(sz), bp(sz); for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i]; if (a == b) { ntt(ap, false); bp = ap; } else { ntt(ap, false); ntt(bp, false); } for (int i = 0; i < sz; i++) ap[i] *= bp[i]; ntt(ap, true); return ap; } long long extgcd_ntt_(long long a, long long b, long long &x, long long &y) { long long d = a; if (b != 0) d = extgcd_ntt_(b, a % b, y, x), y -= (a / b) * x; else x = 1, y = 0; return d; } long long modinv_ntt_(long long a, long long m) { long long x, y; extgcd_ntt_(a, m, x, y); return (m + x % m) % m; } long long garner_ntt_(int r0, int r1, int r2, int mod) { using mint2 = ModInt<nttprimes[2]>; static const long long m01 = 1LL * nttprimes[0] * nttprimes[1]; static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv(); static const long long m01_inv_m2 = mint2(m01).inv(); int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1]; auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2; return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val) % mod; } template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) { int sz = 1, n = a.size(), m = b.size(); while (sz < n + m) sz <<= 1; if (sz <= 16) { std::vector<MODINT> ret(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j]; } return ret; } int mod = MODINT::get_mod(); if (skip_garner or std::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) { a.resize(sz), b.resize(sz); if (a == b) { ntt(a, false); b = a; } else ntt(a, false), ntt(b, false); for (int i = 0; i < sz; i++) a[i] *= b[i]; ntt(a, true); a.resize(n + m - 1); } else { std::vector<int> ai(sz), bi(sz); for (int i = 0; i < n; i++) ai[i] = a[i].val; for (int i = 0; i < m; i++) bi[i] = b[i].val; auto ntt0 = nttconv_<nttprimes[0]>(ai, bi); auto ntt1 = nttconv_<nttprimes[1]>(ai, bi); auto ntt2 = nttconv_<nttprimes[2]>(ai, bi); a.resize(n + m - 1); for (int i = 0; i < n + m - 1; i++) { a[i] = garner_ntt_(ntt0[i].val, ntt1[i].val, ntt2[i].val, mod); } } return a; } constexpr int md = 998244353; using mint = ModInt<md>; // Berlekamp–Massey algorithm // <https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm> // Complexity: O(N^2) // input: S = sequence from field K // return: L = degree of minimal polynomial, // C_reversed = monic min. polynomial (size = L + 1, reversed order, C_reversed[0] = 1)) // Formula: convolve(S, C_reversed)[i] = 0 for i >= L // Example: // - [1, 2, 4, 8, 16] -> (1, [1, -2]) // - [1, 1, 2, 3, 5, 8] -> (2, [1, -1, -1]) // - [0, 0, 0, 0, 1] -> (5, [1, 0, 0, 0, 0, 998244352]) (mod 998244353) // - [] -> (0, [1]) // - [0, 0, 0] -> (0, [1]) // - [-2] -> (1, [1, 2]) template <typename Tfield> std::pair<int, std::vector<Tfield>> linear_recurrence(const std::vector<Tfield> &S) { int N = S.size(); using poly = std::vector<Tfield>; poly C_reversed{1}, B{1}; int L = 0, m = 1; Tfield b = 1; // adjust: C(x) <- C(x) - (d / b) x^m B(x) auto adjust = [](poly C, const poly &B, Tfield d, Tfield b, int m) -> poly { C.resize(std::max(C.size(), B.size() + m)); Tfield a = d / b; for (unsigned i = 0; i < B.size(); i++) C[i + m] -= a * B[i]; return C; }; for (int n = 0; n < N; n++) { Tfield d = S[n]; for (int i = 1; i <= L; i++) d += C_reversed[i] * S[n - i]; if (d == 0) m++; else if (2 * L <= n) { poly T = C_reversed; C_reversed = adjust(C_reversed, B, d, b, m); L = n + 1 - L; B = T; b = d; m = 1; } else C_reversed = adjust(C_reversed, B, d, b, m++); } return std::make_pair(L, C_reversed); } // Calculate x^N mod f(x) // Known as `Kitamasa method` (Fast version based on FFT) // Input: f_reversed: monic, reversed (f_reversed[0] = 1) // Complexity: O(K lg K lgN) (K: deg. of f) // Example: (4, [1, -1, -1]) -> [2, 3] // ( x^4 = (x^2 + x + 2)(x^2 - x - 1) + 3x + 2 ) // Reference: <http://misawa.github.io/others/fast_kitamasa_method.html> // <http://sugarknri.hatenablog.com/entry/2017/11/18/233936> template <typename Tfield> std::vector<Tfield> monomial_mod_polynomial(long long N, const std::vector<Tfield> &f_reversed) { assert(!f_reversed.empty() and f_reversed[0] == 1); int K = f_reversed.size() - 1; if (!K) return {}; int D = 64 - __builtin_clzll(N); std::vector<Tfield> ret(K, 0); ret[0] = 1; auto self_conv = [](std::vector<Tfield> x) -> std::vector<Tfield> { return nttconv(x, x); }; for (int d = D; d--;) { ret = self_conv(ret); for (int i = 2 * K - 2; i >= K; i--) { for (int j = 1; j <= K; j++) ret[i - j] -= ret[i] * f_reversed[j]; } ret.resize(K); if ((N >> d) & 1) { std::vector<Tfield> c(K); c[0] = -ret[K - 1] * f_reversed[K]; for (int i = 1; i < K; i++) { c[i] = ret[i - 1] - ret[K - 1] * f_reversed[K - i]; } ret = c; } } return ret; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl int main() { int X, Y; long long T; long long a, b, c, d; cin >> X >> Y >> T >> a >> b >> c >> d; auto START = std::chrono::system_clock::now(); T = (T - 1) % (md - 1) + 1; long long dist = abs(a - c) + abs(b - d); if (dist > T) { puts("0"); return 0; } mint primitive_root = 3; mint rx = primitive_root.pow((md - 1) / (1 << (X + 1))), rxi = rx.inv(); mint ry = primitive_root.pow((md - 1) / (1 << (Y + 1))), ryi = ry.inv(); mint rxa = rx.pow(a), rxai = rxa.inv(); mint ryb = ry.pow(b), rybi = ryb.inv(); mint rxc = rx.pow(c), rxci = rxc.inv(); mint ryd = ry.pow(d), rydi = ryd.inv(); mint rxpow = 1, rxpowi = 1, rypow, rypowi; mint rxapow = 1, rxapowi = 1, rybpow, rybpowi; mint rxcpow = 1, rxcpowi = 1, rydpow, rydpowi; vector<mint> coeffs; vector<mint> fkls; for (int k = 0; k < 1 << X; k++) { rypow = 1, rypowi = 1; rybpow = 1, rybpowi = 1; rydpow = 1, rydpowi = 1; for (int l = 0; l < 1 << Y; l++) { fkls.emplace_back(rxpow + rxpowi + rypow + rypowi + 1); coeffs.emplace_back((rxapow - rxapowi) * (rybpow - rybpowi) * (rxcpow - rxcpowi) * (rydpow - rydpowi) * mint(1 << (X + Y + 2)).inv()); rypow *= ry, rypowi *= ryi; rybpow *= ryb, rybpowi *= rybi; rydpow *= ryd, rydpowi *= rydi; } rxpow *= rx, rxpowi *= rxi; rxapow *= rxa, rxapowi *= rxai; rxcpow *= rxc, rxcpowi *= rxci; } vector<mint> fklpow; dbg(dist); dbg(T); for (auto x : fkls) fklpow.emplace_back(x.pow(dist)); vector<mint> seq; for (long long t = dist; t - dist <= 10000; t++) { if (chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now() - START).count() > 2000) break; mint tmp = 0; for (int kl = 0; kl < 1 << (X + Y); kl++) { tmp += coeffs[kl] * fklpow[kl]; fklpow[kl] *= fkls[kl]; } if (t == T) { cout << tmp << '\n'; return 0; } seq.emplace_back(tmp); } dbg(seq.size()); auto [L, poly_reversed] = linear_recurrence(seq); dbg(L); auto g = monomial_mod_polynomial(T - dist, poly_reversed); mint ret = 0; for (int i = 0; i < int(g.size()); i++) ret += seq.at(i) * g.at(i); cout << ret << '\n'; }