結果
| 問題 |
No.1078 I love Matrix Construction
|
| コンテスト | |
| ユーザー |
Sumitacchan
|
| 提出日時 | 2020-09-09 21:32:34 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 352 ms / 2,000 ms |
| コード長 | 4,691 bytes |
| コンパイル時間 | 2,274 ms |
| コンパイル使用メモリ | 184,316 KB |
| 実行使用メモリ | 63,284 KB |
| 最終ジャッジ日時 | 2024-12-16 08:39:19 |
| 合計ジャッジ時間 | 8,294 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 22 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
//using namespace atcoder;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define FOR(i, begin, end) for(int i=(begin);i<(end);i++)
#define REP(i, n) FOR(i,0,n)
#define IFOR(i, begin, end) for(int i=(end)-1;i>=(begin);i--)
#define IREP(i, n) IFOR(i,0,n)
#define Sort(v) sort(v.begin(), v.end())
#define Reverse(v) reverse(v.begin(), v.end())
#define all(v) v.begin(),v.end()
#define SZ(v) ((int)v.size())
#define Lower_bound(v, x) distance(v.begin(), lower_bound(v.begin(), v.end(), x))
#define Upper_bound(v, x) distance(v.begin(), upper_bound(v.begin(), v.end(), x))
#define chmax(a, b) a = max(a, b)
#define chmin(a, b) a = min(a, b)
#define bit(n) (1LL<<(n))
#define debug(x) cout << #x << "=" << x << endl;
#define vdebug(v) { cout << #v << "=" << endl; REP(i_debug, v.size()){ cout << v[i_debug] << ","; } cout << endl; }
#define mdebug(m) { cout << #m << "=" << endl; REP(i_debug, m.size()){ REP(j_debug, m[i_debug].size()){ cout << m[i_debug][j_debug] << ","; } cout << endl;} }
#define pb push_back
#define fi first
#define se second
#define int long long
#define INF 1000000000000000000
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; }
template<typename T> ostream &operator<<(ostream &os, vector<T> &v){ for(int i = 0; i < v.size(); i++) { cout << v[i]; if(i != v.size() - 1) cout << endl; }; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, pair<T1, T2> p){ cout << '(' << p.first << ',' << p.second << ')'; return os; }
template<typename T> void Out(T x) { cout << x << endl; }
template<typename T1, typename T2> void chOut(bool f, T1 y, T2 n) { if(f) Out(y); else Out(n); }
using vec = vector<int>;
using mat = vector<vec>;
using Pii = pair<int, int>;
using v_bool = vector<bool>;
using v_Pii = vector<Pii>;
//int dx[4] = {1,0,-1,0};
//int dy[4] = {0,1,0,-1};
//char d[4] = {'D','R','U','L'};
const int mod = 1000000007;
//const int mod = 998244353;
struct edge{int to, cost, id;};
class Graph
{
public:
int N;
vector<vector<edge>> G;
Graph(int N): N(N){
G = vector<vector<edge>>(N, vector<edge>(0));
}
void add_Directed_edge(int from, int to, int cost = 1, int id = 0){
G[from].push_back(edge({to, cost, id}));
}
void add_Undirected_edge(int v1, int v2, int cost = 1, int id = 0){
add_Directed_edge(v1, v2, cost, id);
add_Directed_edge(v2, v1, cost, id);
}
//SCC decomposition
void dfs(int v, vector<bool> &used, vec &vs){
used[v] = true;
REP(i, G[v].size()){
if(!used[G[v][i].to]) dfs(G[v][i].to, used, vs);
}
vs.push_back(v);
}
void rdfs(int v, int k, vector<bool> &used, vec &cmp){
used[v] = true;
cmp[v] = k;
REP(i, G[v].size()){
if(!used[G[v][i].to]) rdfs(G[v][i].to, k, used, cmp);
}
}
//u->v => cmp[u]<cmp[v]
vec scc(int &k){
vector<bool> used(N, false);
vec vs(0), cmp(N);
REP(i, N){
if(!used[i]) dfs(i, used, vs);
}
//reverse graph
Graph rG(N);
REP(v, N) REP(i, G[v].size()) rG.add_Directed_edge(G[v][i].to, v, G[v][i].cost);
fill(used.begin(), used.end(), false);
k = 0;
IREP(i, vs.size()){
if(!used[vs[i]]) rG.rdfs(vs[i], k++, used, cmp);
}
return cmp;
}
//2-SAT用
//N=2nとして、0,...,n-1の否定をn,...,2n-1で表す
int NOT(int X){ return (X + N / 2) % N; }
void add_X(int X){
add_Directed_edge(NOT(X), X);
}
void add_AorB(int A, int B){
add_Directed_edge(NOT(A), B);
add_Directed_edge(NOT(B), A);
}
bool solve_2SAT(vector<bool> &ans){
int k;
int n = N / 2;
vec cmp = scc(k);
ans.resize(n);
REP(i, n){
if(cmp[i] == cmp[i + n]) return false;
else if(cmp[i] < cmp[i + n]) ans[i] = false;
else ans[i] = true;
}
return true;
}
};
signed main(){
int N; cin >> N;
vec S(N), T(N), U(N); cin >> S >> T >> U;
REP(i, N){
S[i]--; T[i]--;
}
Graph G(2 * N * N);
REP(i, N) REP(j, N){
int a = S[i] * N + j, b = j * N + T[i];
if(U[i] % 2) a += N * N;
if(U[i] / 2) b += N * N;
G.add_AorB(a, b);
}
v_bool ans;
bool ok = G.solve_2SAT(ans);
if(ok){
REP(i, N){
REP(j, N) cout << ans[i * N + j] << " ";
cout << endl;
}
}else{
Out(-1);
}
return 0;
}
Sumitacchan