結果
問題 | No.1226 I hate Robot Arms |
ユーザー | KoD |
提出日時 | 2020-09-11 22:06:10 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 402 ms / 2,000 ms |
コード長 | 14,175 bytes |
コンパイル時間 | 1,324 ms |
コンパイル使用メモリ | 110,620 KB |
実行使用メモリ | 12,092 KB |
最終ジャッジ日時 | 2024-06-10 10:14:58 |
合計ジャッジ時間 | 16,169 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 113 ms
6,948 KB |
testcase_03 | AC | 131 ms
6,944 KB |
testcase_04 | AC | 137 ms
9,760 KB |
testcase_05 | AC | 123 ms
11,636 KB |
testcase_06 | AC | 313 ms
11,000 KB |
testcase_07 | AC | 103 ms
6,944 KB |
testcase_08 | AC | 33 ms
9,988 KB |
testcase_09 | AC | 240 ms
6,944 KB |
testcase_10 | AC | 29 ms
6,940 KB |
testcase_11 | AC | 153 ms
9,324 KB |
testcase_12 | AC | 87 ms
6,944 KB |
testcase_13 | AC | 63 ms
11,640 KB |
testcase_14 | AC | 292 ms
6,944 KB |
testcase_15 | AC | 22 ms
10,672 KB |
testcase_16 | AC | 312 ms
11,632 KB |
testcase_17 | AC | 89 ms
6,940 KB |
testcase_18 | AC | 58 ms
6,944 KB |
testcase_19 | AC | 164 ms
10,336 KB |
testcase_20 | AC | 141 ms
9,684 KB |
testcase_21 | AC | 195 ms
8,860 KB |
testcase_22 | AC | 329 ms
11,752 KB |
testcase_23 | AC | 324 ms
11,876 KB |
testcase_24 | AC | 325 ms
12,092 KB |
testcase_25 | AC | 331 ms
11,892 KB |
testcase_26 | AC | 325 ms
11,916 KB |
testcase_27 | AC | 399 ms
11,876 KB |
testcase_28 | AC | 399 ms
11,936 KB |
testcase_29 | AC | 402 ms
11,980 KB |
ソースコード
#line 1 "main.cpp" /** * @title Template */ #include <iostream> #include <algorithm> #include <utility> #include <numeric> #include <vector> #include <array> #include <cassert> #include <cmath> #include <iomanip> #include <complex> #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/chmin_chmax.cpp" template <class T, class U> constexpr bool chmin(T &lhs, const U &rhs) { if (lhs > rhs) { lhs = rhs; return true; } return false; } template <class T, class U> constexpr bool chmax(T &lhs, const U &rhs) { if (lhs < rhs) { lhs = rhs; return true; } return false; } /** * @title Chmin/Chmax */ #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp" #line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp" class range { public: class iterator { private: int64_t M_position; public: constexpr iterator(int64_t position) noexcept: M_position(position) { } constexpr void operator ++ () noexcept { ++M_position; } constexpr bool operator != (iterator other) const noexcept { return M_position != other.M_position; } constexpr int64_t operator * () const noexcept { return M_position; } }; class reverse_iterator { private: int64_t M_position; public: constexpr reverse_iterator(int64_t position) noexcept: M_position(position) { } constexpr void operator ++ () noexcept { --M_position; } constexpr bool operator != (reverse_iterator other) const noexcept { return M_position != other.M_position; } constexpr int64_t operator * () const noexcept { return M_position; } }; private: const iterator M_first, M_last; public: constexpr range(int64_t first, int64_t last) noexcept: M_first(first), M_last(std::max(first, last)) { } constexpr iterator begin() const noexcept { return M_first; } constexpr iterator end() const noexcept { return M_last; } constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator(*M_last - 1); } constexpr reverse_iterator rend() const noexcept { return reverse_iterator(*M_first - 1); } }; /** * @title Range */ #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp" #include <type_traits> #include <iterator> #line 6 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp" template <class T> class rev_impl { public: using iterator = decltype(std::rbegin(std::declval<T>())); private: const iterator M_begin; const iterator M_end; public: constexpr rev_impl(T &&cont) noexcept: M_begin(std::rbegin(cont)), M_end(std::rend(cont)) { } constexpr iterator begin() const noexcept { return M_begin; } constexpr iterator end() const noexcept { return M_end; } }; template <class T> constexpr decltype(auto) rev(T &&cont) { return rev_impl<T>(std::forward<T>(cont)); } /** * @title Reverser */ #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp" #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp" #include <type_traits> #line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp" #include <stdexcept> template <class T, class = void> class has_identity: public std::false_type { }; template <class T> class has_identity<T, typename std::conditional<false, decltype(T::identity()), void>::type>: public std::true_type { }; template <class T> constexpr typename std::enable_if<has_identity<T>::value, typename T::type>::type empty_exception() { return T::identity(); } template <class T> [[noreturn]] typename std::enable_if<!has_identity<T>::value, typename T::type>::type empty_exception() { throw std::runtime_error("type T has no identity"); } template <class T, bool HasIdentity> class fixed_monoid_impl: public T { public: using type = typename T::type; static constexpr type convert(const type &value) { return value; } static constexpr type revert(const type &value) { return value; } template <class Mapping, class Value, class... Args> static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) { value = func(value, op, std::forward<Args>(args)...); } template <class Constraint> static constexpr bool satisfies(Constraint &&func, const type &value) { return func(value); } }; template <class T> class fixed_monoid_impl<T, false>: private T { public: class type { public: typename T::type value; bool state; explicit constexpr type(): value(typename T::type { }), state(false) { } explicit constexpr type(const typename T::type &value): value(value), state(true) { } }; static constexpr type convert(const typename T::type &value) { return type(value); } static constexpr typename T::type revert(const type &value) { if (!value.state) throw std::runtime_error("attempted to revert identity to non-monoid"); return value.value; } static constexpr type identity() { return type(); } static constexpr type operation(const type &v1, const type &v2) { if (!v1.state) return v2; if (!v2.state) return v1; return type(T::operation(v1.value, v2.value)); } template <class Mapping, class Value, class... Args> static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) { if (!op.state) return; value = func(value, op.value, std::forward<Args>(args)...); } template <class Constraint> static constexpr bool satisfies(Constraint &&func, const type &value) { if (!value.state) return false; return func(value.value); } }; template <class T> using fixed_monoid = fixed_monoid_impl<T, has_identity<T>::value>; /** * @title Monoid Utility */ #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/bit_operation.cpp" #include <cstddef> #include <cstdint> constexpr size_t bit_ppc(const uint64_t x) { return __builtin_popcountll(x); } constexpr size_t bit_ctzr(const uint64_t x) { return x == 0 ? 64 : __builtin_ctzll(x); } constexpr size_t bit_ctzl(const uint64_t x) { return x == 0 ? 64 : __builtin_clzll(x); } constexpr size_t bit_width(const uint64_t x) { return 64 - bit_ctzl(x); } constexpr uint64_t bit_msb(const uint64_t x) { return x == 0 ? 0 : uint64_t(1) << (bit_width(x) - 1); } constexpr uint64_t bit_lsb(const uint64_t x) { return x & (-x); } constexpr uint64_t bit_cover(const uint64_t x) { return x == 0 ? 0 : bit_msb(2 * x - 1); } constexpr uint64_t bit_rev(uint64_t x) { x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1); x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2); x = ((x >> 4) & 0x0F0F0F0F0F0F0F0F) | ((x & 0x0F0F0F0F0F0F0F0F) << 4); x = ((x >> 8) & 0x00FF00FF00FF00FF) | ((x & 0x00FF00FF00FF00FF) << 8); x = ((x >> 16) & 0x0000FFFF0000FFFF) | ((x & 0x0000FFFF0000FFFF) << 16); x = (x >> 32) | (x << 32); return x; } /** * @title Bit Operations */ #line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp" #line 11 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp" #include <type_traits> #line 13 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp" template <class Monoid> class segment_tree { public: using structure = Monoid; using value_monoid = typename Monoid::value_structure; using value_type = typename Monoid::value_structure::type; using size_type = size_t; private: using fixed_value_monoid = fixed_monoid<value_monoid>; using fixed_value_type = typename fixed_value_monoid::type; std::vector<fixed_value_type> M_tree; void M_fix_change(const size_type index) { M_tree[index] = fixed_value_monoid::operation(M_tree[index << 1 | 0], M_tree[index << 1 | 1]); } public: segment_tree() = default; explicit segment_tree(const size_type size) { initialize(size); } template <class InputIterator> explicit segment_tree(InputIterator first, InputIterator last) { construct(first, last); } void initialize(const size_type size) { clear(); M_tree.assign(size << 1, fixed_value_monoid::identity()); } template <class InputIterator> void construct(InputIterator first, InputIterator last) { clear(); const size_type size = std::distance(first, last); M_tree.reserve(size << 1); M_tree.assign(size, fixed_value_monoid::identity()); std::transform(first, last, std::back_inserter(M_tree), [&](const value_type &value) { return fixed_value_monoid::convert(value); }); for (size_type index = size - 1; index != 0; --index) { M_fix_change(index); } } void assign(size_type index, const value_type &value) { assert(index < size()); index += size(); M_tree[index] = fixed_value_monoid::convert(value); while (index != 1) { index >>= 1; M_fix_change(index); } } value_type at(const size_type index) const { assert(index < size()); return fixed_value_monoid::revert(M_tree[index + size()]); } value_type fold(size_type first, size_type last) const { assert(first <= last); assert(last <= size()); first += size(); last += size(); fixed_value_type fold_l = fixed_value_monoid::identity(); fixed_value_type fold_r = fixed_value_monoid::identity(); while (first != last) { if (first & 1) { fold_l = fixed_value_monoid::operation(fold_l, M_tree[first]); ++first; } if (last & 1) { --last; fold_r = fixed_value_monoid::operation(M_tree[last], fold_r); } first >>= 1; last >>= 1; } return fixed_value_monoid::revert(fixed_value_monoid::operation(fold_l, fold_r)); } template <bool ToRight = true, class Constraint, std::enable_if_t<ToRight>* = nullptr> size_type satisfies(const size_type left, Constraint &&func) const { assert(left <= size()); if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), fixed_value_monoid::identity())) return left; size_type first = left + size(); size_type last = 2 * size(); const size_type last_c = last; fixed_value_type fold = fixed_value_monoid::identity(); const auto try_merge = [&](const size_type index) { fixed_value_type tmp = fixed_value_monoid::operation(fold, M_tree[index]); if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), tmp)) return true; fold = std::move(tmp); return false; }; const auto subtree = [&](size_type index) { while (index < size()) { index <<= 1; if (!try_merge(index)) ++index; } return index - size() + 1; }; size_type story = 0; while (first < last) { if (first & 1) { if (try_merge(first)) return subtree(first); ++first; } first >>= 1; last >>= 1; ++story; } while (story--) { last = last_c >> story; if (last & 1) { --last; if (try_merge(last)) return subtree(last); } } return size() + 1; } template <bool ToRight = true, class Constraint, std::enable_if_t<!ToRight>* = nullptr> size_type satisfies(const size_type right, Constraint &&func) const { assert(right <= size()); if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), fixed_value_monoid::identity())) return right; size_type first = size(); size_type last = right + size(); const size_type first_c = first; fixed_value_type fold = fixed_value_monoid::identity(); const auto try_merge = [&](const size_type index) { fixed_value_type tmp = fixed_value_monoid::operation(M_tree[index], fold); if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), tmp)) return true; fold = std::move(tmp); return false; }; const auto subtree = [&](size_type index) { while (index < size()) { index <<= 1; if (try_merge(index + 1)) ++index; } return index - size(); }; size_type story = 0; while (first < last) { if (first & 1) ++first; if (last & 1) { --last; if (try_merge(last)) return subtree(last); } first >>= 1; last >>= 1; ++story; } const size_type cover = bit_cover(first_c); while (story--) { first = (cover >> story) - ((cover - first_c) >> story); if (first & 1) { if (try_merge(first)) return subtree(first); } } return size_type(-1); } void clear() { M_tree.clear(); M_tree.shrink_to_fit(); } size_type size() const { return M_tree.size() >> 1; } }; /** * @title Segment Tree */ #line 21 "main.cpp" using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; constexpr i32 inf32 = (i32(1) << 30) - 1; constexpr i64 inf64 = (i64(1) << 62) - 1; using f32 = float; using f64 = double; using f80 = long double; struct st_monoid { struct value_structure { struct type { std::complex<f64> coord; f64 theta; }; static type identity() { return type { std::complex<f64>(), f64() }; } static type operation(const type& v1, const type& v2) { return type{ v1.coord + std::polar(1.0, v1.theta) * v2.coord, v1.theta + v2.theta }; } }; }; constexpr f64 pi = std::acos(-1.0); int main() { std::cout << std::fixed << std::setprecision(20); i32 N, Q; std::cin >> N >> Q; std::vector<f64> angle(N), length(N, 1.0); segment_tree<st_monoid> seg; using type = typename st_monoid::value_structure::type; { std::vector<type> build; build.reserve(N); for (auto i: range(0, N)) { build.push_back(type{ std::polar(length[i], angle[i]), angle[i] }); } seg.construct(build.begin(), build.end()); } while (Q--) { i32 t, i; std::cin >> t >> i; --i; if (t == 0) { std::cin >> angle[i]; angle[i] = angle[i] * pi / 180.0; seg.assign(i, type{ std::polar(length[i], angle[i]), angle[i] }); } else if (t == 1) { std::cin >> length[i]; seg.assign(i, type{ std::polar(length[i], angle[i]), angle[i] }); } else { const auto z = seg.fold(0, i + 1).coord; std::cout << z.real() << ' ' << z.imag() << '\n'; } } return 0; }