結果
| 問題 |
No.1226 I hate Robot Arms
|
| コンテスト | |
| ユーザー |
masayoshi361
|
| 提出日時 | 2020-09-11 22:45:34 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 9,869 bytes |
| コンパイル時間 | 1,946 ms |
| コンパイル使用メモリ | 186,396 KB |
| 実行使用メモリ | 20,048 KB |
| 最終ジャッジ日時 | 2025-01-01 21:34:27 |
| 合計ジャッジ時間 | 11,316 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 2 |
| other | WA * 28 |
ソースコード
/* #region header */
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std;
//#include <atcoder/all>
// using namespace atcoder;
#ifdef LOCAL
#include "cxx-prettyprint-master/prettyprint.hpp"
void debug() { cout << endl; }
template <typename Head, typename... Tail>
void debug(Head H, Tail... T) {
cout << " " << H;
debug(T...);
}
#else
#define debug(...) 42
#endif
// types
using ll = long long;
using ull = unsigned long long;
using ld = long double;
typedef pair<ll, ll> Pl;
typedef pair<int, int> Pi;
typedef vector<ll> vl;
typedef vector<int> vi;
typedef vector<char> vc;
template <typename T>
using mat = vector<vector<T>>;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef vector<vector<char>> vvc;
// abreviations
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define rep_(i, a_, b_, a, b, ...) for (ll i = (a), max_i = (b); i < max_i; i++)
#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define rrep_(i, a_, b_, a, b, ...) \
for (ll i = (b - 1), min_i = (a); i >= min_i; i--)
#define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define SZ(x) ((ll)(x).size())
#define pb(x) push_back(x)
#define eb(x) emplace_back(x)
#define mp make_pair
#define print(x) cout << x << endl
#define vprint(x) \
rep(i, x.size()) cout << x[i] << ' '; \
cout << endl
#define vsum(x) accumulate(all(x), 0LL)
#define vmax(a) *max_element(all(a))
#define vmin(a) *min_element(all(a))
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
// functions
// gcd(0, x) fails.
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <typename T>
T mypow(T x, ll n) {
T ret = 1;
while (n > 0) {
if (n & 1) (ret *= x);
(x *= x);
n >>= 1;
}
return ret;
}
ll modpow(ll x, ll n, const ll mod) {
ll ret = 1;
while (n > 0) {
if (n & 1) (ret *= x);
(x *= x);
n >>= 1;
x %= mod;
ret %= mod;
}
return ret;
}
uint64_t my_rand(void) {
static uint64_t x = 88172645463325252ULL;
x = x ^ (x << 13);
x = x ^ (x >> 7);
return x = x ^ (x << 17);
}
ll popcnt(ull x) { return __builtin_popcountll(x); }
// graph template
template <typename T>
struct edge {
int src, to;
T cost;
edge(int to, T cost) : src(-1), to(to), cost(cost) {}
edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
bool operator<(const edge<T> &r) const { return cost < r.cost; }
operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnWeightedGraph = vector<vector<int>>;
struct Timer {
clock_t start_time;
void start() { start_time = clock(); }
int lap() {
// return x ms.
return (clock() - start_time) * 1000 / CLOCKS_PER_SEC;
}
};
/* #endregion*/
// constant
#define inf 1000000005
#define INF 4000000004000000000LL
#define mod 1000000007LL
#define endl '\n'
const long double eps = 0.000001;
const long double PI = acosl(-1);
// library
template <typename Monoid, typename OperatorMonoid = Monoid>
struct LazySegmentTree {
using F = function<Monoid(Monoid, Monoid)>;
using G = function<Monoid(Monoid, OperatorMonoid)>;
using H = function<OperatorMonoid(OperatorMonoid, OperatorMonoid)>;
int sz, height;
vector<Monoid> data;
vector<OperatorMonoid> lazy;
const F f;
const G g;
const H h;
const Monoid M1;
const OperatorMonoid OM0;
LazySegmentTree(int n, const F f, const G g, const H h, const Monoid &M1,
const OperatorMonoid OM0)
: f(f), g(g), h(h), M1(M1), OM0(OM0) {
sz = 1;
height = 0;
while (sz < n) sz <<= 1, height++;
data.assign(2 * sz, M1);
lazy.assign(2 * sz, OM0);
}
void set(int k, const Monoid &x) { data[k + sz] = x; }
void build() {
for (int k = sz - 1; k > 0; k--) {
data[k] = f(data[2 * k + 0], data[2 * k + 1]);
}
}
inline void propagate(int k) {
if (lazy[k] != OM0) {
lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);
lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);
data[k] = reflect(k);
lazy[k] = OM0;
}
}
inline Monoid reflect(int k) {
return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]);
}
inline void recalc(int k) {
while (k >>= 1) data[k] = f(reflect(2 * k + 0), reflect(2 * k + 1));
}
inline void thrust(int k) {
for (int i = height; i > 0; i--) propagate(k >> i);
}
void update(int a, int b, const OperatorMonoid &x) {
thrust(a += sz);
thrust(b += sz - 1);
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) lazy[l] = h(lazy[l], x), ++l;
if (r & 1) --r, lazy[r] = h(lazy[r], x);
}
recalc(a);
recalc(b);
}
Monoid query(int a, int b) {
thrust(a += sz);
thrust(b += sz - 1);
Monoid L = M1, R = M1;
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) L = f(L, reflect(l++));
if (r & 1) R = f(reflect(--r), R);
}
return f(L, R);
}
Monoid operator[](const int &k) { return query(k, k + 1); }
template <typename C>
int find_subtree(int a, const C &check, Monoid &M, bool type) {
while (a < sz) {
propagate(a);
Monoid nxt = type ? f(reflect(2 * a + type), M)
: f(M, reflect(2 * a + type));
if (check(nxt))
a = 2 * a + type;
else
M = nxt, a = 2 * a + 1 - type;
}
return a - sz;
}
template <typename C>
int find_first(int a, const C &check) {
Monoid L = M1;
if (a <= 0) {
if (check(f(L, reflect(1))))
return find_subtree(1, check, L, false);
return -1;
}
thrust(a + sz);
int b = sz;
for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
if (a & 1) {
Monoid nxt = f(L, reflect(a));
if (check(nxt)) return find_subtree(a, check, L, false);
L = nxt;
++a;
}
}
return -1;
}
template <typename C>
int find_last(int b, const C &check) {
Monoid R = M1;
if (b >= sz) {
if (check(f(reflect(1), R))) return find_subtree(1, check, R, true);
return -1;
}
thrust(b + sz - 1);
int a = sz;
for (b += sz; a < b; a >>= 1, b >>= 1) {
if (b & 1) {
Monoid nxt = f(reflect(--b), R);
if (check(nxt)) return find_subtree(b, check, R, true);
R = nxt;
}
}
return -1;
}
};
using X = complex<ld>;
using M = complex<ld>;
////condition 左から作用するイメージ
// x*em = x
//(x1・x2)*m = (x1*m)・(x2*m) ・ = +の時は注意
//(x1*m1)*m2 = x*(m1×2m)
////X:monoid, M:operator
// using X = ll;
// using M = ll;
////モノイドのマージ
// auto fx = [](X x1, X x2){return min(x1, x2);};//min
// auto fx = [](X x1, X x2){return max(x1, x2);};//max
////モノイドと作用素のマージ
// auto fa = [](X x, M m){return m;};//replace
// auto fa = [](X x, M m){return m+x;};//sum
////作用素のマージ
// auto fm = [](M m1, M m2){return m2;};//replace
// auto fm = [](M m1, M m2){return m1+m2;};//sum
////fp = m**n
// auto fp = [](M m, long long n){ return m * n; };//sum
// auto fp = [](M m, long long n){ return m; };//min or max
////example
// LazySegTree<X, M> seg(n, fx, fa, fm, fp, ex, em);
////range sum query
// using P = pair<X, X>;
////モノイドのマージ 範囲を持たせる
// auto fx=[](P a,P b){return P(a.first+b.first,a.second+b.second);};//sum
////モノイドと作用素のマージ 範囲を持たせる
// auto fa=[](P a,M b){return P(a.second*b,a.second);};//replace
// auto fa=[](P a,M b){return P(a.first+a.second*b,a.second);};//add
////作用素のマージ(上と同じ)
// auto fm = [](M m1, M m2){return m2;};//replace
// auto fm = [](M m1, M m2){return m1+m2;};//add
////単位元 ex.second = 1
// P ex = P(0, 0);//初期値はP(0, 1)にすること
// LazySegmentTree<P, M> seg(n, fx, fa, fm, fp, ex, em);
int main() {
cin.tie(0);
ios::sync_with_stdio(0);
cout << setprecision(30);
ll n, q;
cin >> n >> q;
auto f = [&](complex<ld> x, complex<ld> y) { return x + y; };
auto g = [&](X x, X y) { return x * y; };
LazySegmentTree<complex<ld>> seg(n, f, g, g, 0, 1);
rep(i, n) seg.set(i, complex<ld>(1, 0));
seg.build();
rep(i, q) {
int t;
cin >> t;
if (t == 0) {
ll i;
ld x;
cin >> i >> x;
i--;
x *= PI / 180;
complex<ld> a(cosl(x), sinl(x));
print(a);
seg.update(i, n, a);
} else if (t == 1) {
ll i, x;
cin >> i >> x;
i--;
complex<ld> a(x, 0);
seg.update(i, i + 1, a);
} else {
ll i;
cin >> i;
auto a = seg.query(0, i);
cout << a.real() << ' ' << a.imag() << endl;
}
}
}
masayoshi361