結果

問題 No.1226 I hate Robot Arms
ユーザー KoDKoD
提出日時 2020-09-11 23:29:04
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 210 ms / 2,000 ms
コード長 14,241 bytes
コンパイル時間 1,019 ms
コンパイル使用メモリ 109,436 KB
実行使用メモリ 11,980 KB
最終ジャッジ日時 2024-06-10 10:51:13
合計ジャッジ時間 9,696 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 59 ms
6,944 KB
testcase_03 AC 65 ms
6,944 KB
testcase_04 AC 77 ms
9,716 KB
testcase_05 AC 63 ms
11,452 KB
testcase_06 AC 161 ms
10,988 KB
testcase_07 AC 56 ms
6,940 KB
testcase_08 AC 20 ms
9,984 KB
testcase_09 AC 125 ms
6,940 KB
testcase_10 AC 15 ms
6,944 KB
testcase_11 AC 77 ms
9,472 KB
testcase_12 AC 45 ms
6,940 KB
testcase_13 AC 34 ms
11,488 KB
testcase_14 AC 147 ms
6,940 KB
testcase_15 AC 14 ms
10,644 KB
testcase_16 AC 159 ms
11,496 KB
testcase_17 AC 46 ms
6,944 KB
testcase_18 AC 31 ms
6,944 KB
testcase_19 AC 82 ms
10,284 KB
testcase_20 AC 74 ms
9,600 KB
testcase_21 AC 102 ms
8,880 KB
testcase_22 AC 171 ms
11,980 KB
testcase_23 AC 178 ms
11,656 KB
testcase_24 AC 170 ms
11,808 KB
testcase_25 AC 176 ms
11,780 KB
testcase_26 AC 164 ms
11,876 KB
testcase_27 AC 210 ms
11,848 KB
testcase_28 AC 192 ms
11,780 KB
testcase_29 AC 195 ms
11,812 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"

/**
 * @title Template
 */

#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
#include <cassert>
#include <cmath>
#include <iomanip>
#include <complex>

#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/chmin_chmax.cpp"

template <class T, class U>
constexpr bool chmin(T &lhs, const U &rhs) {
  if (lhs > rhs) { lhs = rhs; return true; }
  return false;
}

template <class T, class U>
constexpr bool chmax(T &lhs, const U &rhs) {
  if (lhs < rhs) { lhs = rhs; return true; }
  return false;
}

/**
 * @title Chmin/Chmax
 */
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"

#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"

class range {
public:
  class iterator {
  private:
    int64_t M_position;

  public:
    constexpr iterator(int64_t position) noexcept: M_position(position) { }
    constexpr void operator ++ () noexcept { ++M_position; }
    constexpr bool operator != (iterator other) const noexcept { return M_position != other.M_position; }
    constexpr int64_t operator * () const noexcept { return M_position; }
  };

  class reverse_iterator {
  private:
    int64_t M_position;
  
  public:
    constexpr reverse_iterator(int64_t position) noexcept: M_position(position) { }
    constexpr void operator ++ () noexcept { --M_position; }
    constexpr bool operator != (reverse_iterator other) const noexcept { return M_position != other.M_position; }
    constexpr int64_t operator * () const noexcept { return M_position; }
  };
  
private:
  const iterator M_first, M_last;

public:
  constexpr range(int64_t first, int64_t last) noexcept: M_first(first), M_last(std::max(first, last)) { }
  constexpr iterator begin() const noexcept { return M_first; }
  constexpr iterator end() const noexcept { return M_last; }
  constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator(*M_last - 1); } 
  constexpr reverse_iterator rend() const noexcept { return reverse_iterator(*M_first - 1); } 
};

/**
 * @title Range
 */
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp"

#include <type_traits>
#include <iterator>
#line 6 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp"

template <class T>
class rev_impl {
public:
  using iterator = decltype(std::rbegin(std::declval<T>()));

private:
  const iterator M_begin;
  const iterator M_end;

public:
  constexpr rev_impl(T &&cont) noexcept: M_begin(std::rbegin(cont)), M_end(std::rend(cont)) { }
  constexpr iterator begin() const noexcept { return M_begin; }
  constexpr iterator end() const noexcept { return M_end; }
};

template <class T>
constexpr decltype(auto) rev(T &&cont) {
  return rev_impl<T>(std::forward<T>(cont));
}

/**
 * @title Reverser
 */
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"

#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp"

#include <type_traits>
#line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp"
#include <stdexcept>

template <class T, class = void>
class has_identity: public std::false_type { };

template <class T>
class has_identity<T, typename std::conditional<false, decltype(T::identity()), void>::type>: public std::true_type { };

template <class T>
constexpr typename std::enable_if<has_identity<T>::value, typename T::type>::type empty_exception() {
  return T::identity();
}
template <class T>
[[noreturn]] typename std::enable_if<!has_identity<T>::value, typename T::type>::type empty_exception() {
  throw std::runtime_error("type T has no identity");
}

template <class T, bool HasIdentity>
class fixed_monoid_impl: public T {
public:
  using type = typename T::type;

  static constexpr type convert(const type &value) { return value; }
  static constexpr type revert(const type &value) { return value; }

  template <class Mapping, class Value, class... Args>
  static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) {
    value = func(value, op, std::forward<Args>(args)...);
  }
  template <class Constraint>
  static constexpr bool satisfies(Constraint &&func, const type &value) {
    return func(value);
  }
};

template <class T>
class fixed_monoid_impl<T, false>: private T {
public:
  class type {
  public:
    typename T::type value;
    bool state;
  
    explicit constexpr type(): value(typename T::type { }), state(false) { }
    explicit constexpr type(const typename T::type &value): value(value), state(true) { }
  };

  static constexpr type convert(const typename T::type &value) { return type(value); }
  static constexpr typename T::type revert(const type &value) { 
    if (!value.state) throw std::runtime_error("attempted to revert identity to non-monoid"); 
    return value.value; 
  }

  static constexpr type identity() { return type(); }
  static constexpr type operation(const type &v1, const type &v2) {
    if (!v1.state) return v2;
    if (!v2.state) return v1;
    return type(T::operation(v1.value, v2.value));
  }

  template <class Mapping, class Value, class... Args>
  static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) {
    if (!op.state) return;
    value = func(value, op.value, std::forward<Args>(args)...);
  }
  template <class Constraint>
  static constexpr bool satisfies(Constraint &&func, const type &value) {
    if (!value.state) return false;
    return func(value.value);
  }
};

template <class T>
using fixed_monoid = fixed_monoid_impl<T, has_identity<T>::value>;

/**
 * @title Monoid Utility
 */
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/bit_operation.cpp"

#include <cstddef>
#include <cstdint>

constexpr size_t bit_ppc(const uint64_t x) { return __builtin_popcountll(x); }
constexpr size_t bit_ctzr(const uint64_t x) { return x == 0 ? 64 : __builtin_ctzll(x); }
constexpr size_t bit_ctzl(const uint64_t x) { return x == 0 ? 64 : __builtin_clzll(x); }
constexpr size_t bit_width(const uint64_t x) { return 64 - bit_ctzl(x); }
constexpr uint64_t bit_msb(const uint64_t x) { return x == 0 ? 0 : uint64_t(1) << (bit_width(x) - 1); }
constexpr uint64_t bit_lsb(const uint64_t x) { return x & (-x); }
constexpr uint64_t bit_cover(const uint64_t x) { return x == 0 ? 0 : bit_msb(2 * x - 1); }

constexpr uint64_t bit_rev(uint64_t x) {
  x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1);
  x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2);
  x = ((x >> 4) & 0x0F0F0F0F0F0F0F0F) | ((x & 0x0F0F0F0F0F0F0F0F) << 4);
  x = ((x >> 8) & 0x00FF00FF00FF00FF) | ((x & 0x00FF00FF00FF00FF) << 8);
  x = ((x >> 16) & 0x0000FFFF0000FFFF) | ((x & 0x0000FFFF0000FFFF) << 16);
  x = (x >> 32) | (x << 32);
  return x;
}

/**
 * @title Bit Operations
 */
#line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"

#line 11 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"
#include <type_traits>
#line 13 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"

template <class Monoid>
class segment_tree {
public:
  using structure    = Monoid;
  using value_monoid = typename Monoid::value_structure;
  using value_type   = typename Monoid::value_structure::type;
  using size_type    = size_t;

private:
  using fixed_value_monoid = fixed_monoid<value_monoid>;
  using fixed_value_type   = typename fixed_value_monoid::type;

  std::vector<fixed_value_type> M_tree;

  void M_fix_change(const size_type index) {
    M_tree[index] = fixed_value_monoid::operation(M_tree[index << 1 | 0], M_tree[index << 1 | 1]);
  }

public:
  segment_tree() = default;
  explicit segment_tree(const size_type size) { initialize(size); }
  template <class InputIterator>
  explicit segment_tree(InputIterator first, InputIterator last) { construct(first, last); }

  void initialize(const size_type size) {
    clear();
    M_tree.assign(size << 1, fixed_value_monoid::identity());
  }

  template <class InputIterator>
  void construct(InputIterator first, InputIterator last) {
    clear();
    const size_type size = std::distance(first, last);
    M_tree.reserve(size << 1);
    M_tree.assign(size, fixed_value_monoid::identity());
    std::transform(first, last, std::back_inserter(M_tree), [&](const value_type &value) {
      return fixed_value_monoid::convert(value);
    });
    for (size_type index = size - 1; index != 0; --index) {
      M_fix_change(index);
    }
  }

  void assign(size_type index, const value_type &value) {
    assert(index < size());
    index += size();
    M_tree[index] = fixed_value_monoid::convert(value);
    while (index != 1) {
      index >>= 1;
      M_fix_change(index);
    } 
  }

  value_type at(const size_type index) const { 
    assert(index < size());
    return fixed_value_monoid::revert(M_tree[index + size()]);
  }

  value_type fold(size_type first, size_type last) const {
    assert(first <= last);
    assert(last <= size());
    first += size();
    last += size();
    fixed_value_type fold_l = fixed_value_monoid::identity();
    fixed_value_type fold_r = fixed_value_monoid::identity();
    while (first != last) {
      if (first & 1) {
        fold_l = fixed_value_monoid::operation(fold_l, M_tree[first]);
        ++first;
      }
      if (last & 1) {
        --last;
        fold_r = fixed_value_monoid::operation(M_tree[last], fold_r);      
      }
      first >>= 1;
      last >>= 1;
    }
    return fixed_value_monoid::revert(fixed_value_monoid::operation(fold_l, fold_r));
  }

  template <bool ToRight = true, class Constraint, std::enable_if_t<ToRight>* = nullptr> 
  size_type satisfies(const size_type left, Constraint &&func) const {
    assert(left <= size());
    if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), 
      fixed_value_monoid::identity())) return left;
    size_type first = left + size();
    size_type last = 2 * size();
    const size_type last_c = last;
    fixed_value_type fold = fixed_value_monoid::identity();
    const auto try_merge = [&](const size_type index) {
      fixed_value_type tmp = fixed_value_monoid::operation(fold, M_tree[index]);
      if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), tmp)) return true;
      fold = std::move(tmp);
      return false;
    };
    const auto subtree = [&](size_type index) {
      while (index < size()) {
        index <<= 1;
        if (!try_merge(index)) ++index;
      }
      return index - size() + 1;
    };
    size_type story = 0;
    while (first < last) {
      if (first & 1) {
        if (try_merge(first)) return subtree(first);
        ++first;
      }
      first >>= 1;
      last >>= 1;
      ++story;
    }
    while (story--) {
      last = last_c >> story;
      if (last & 1) {
        --last;
        if (try_merge(last)) return subtree(last);
      }
    }
    return size() + 1;
  }

  template <bool ToRight = true, class Constraint, std::enable_if_t<!ToRight>* = nullptr> 
  size_type satisfies(const size_type right, Constraint &&func) const {
    assert(right <= size());
    if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), 
      fixed_value_monoid::identity())) return right;
    size_type first = size();
    size_type last = right + size();
    const size_type first_c = first;
    fixed_value_type fold = fixed_value_monoid::identity();
    const auto try_merge = [&](const size_type index) {
      fixed_value_type tmp = fixed_value_monoid::operation(M_tree[index], fold);
      if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), tmp)) return true;
      fold = std::move(tmp);
      return false;
    };
    const auto subtree = [&](size_type index) {
      while (index < size()) {
        index <<= 1;
        if (try_merge(index + 1)) ++index;
      }
      return index - size();
    };
    size_type story = 0;
    while (first < last) {
      if (first & 1) ++first;
      if (last & 1) {
        --last;
        if (try_merge(last)) return subtree(last);
      }
      first >>= 1;
      last >>= 1;
      ++story;
    }
    const size_type cover = bit_cover(first_c);
    while (story--) {
      first = (cover >> story) - ((cover - first_c) >> story);
      if (first & 1) {
        if (try_merge(first)) return subtree(first);
      }
    }
    return size_type(-1);
  }

  void clear() {
    M_tree.clear();
    M_tree.shrink_to_fit();
  }
  size_type size() const { 
    return M_tree.size() >> 1;
  }
};

/**
 * @title Segment Tree
 */
#line 21 "main.cpp"

using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;

constexpr i32 inf32 = (i32(1) << 30) - 1;
constexpr i64 inf64 = (i64(1) << 62) - 1;

using f32 = float;
using f64 = double;
using f80 = long double;

struct st_monoid {
  struct value_structure {
    struct type {
      std::complex<f64> coord;
      f64 theta;
    };
    static type identity() { return type { std::complex<f64>(), f64() }; }
    static type operation(const type& v1, const type& v2) { 
      return type{ v1.coord + std::polar(1.0, v1.theta) * v2.coord, v1.theta + v2.theta };
    }
  };
};

constexpr f64 pi = std::acos(-1.0);

int main() {
  std::cout << std::fixed << std::setprecision(10);
  std::ios_base::sync_with_stdio(false);
  std::cin.tie(nullptr);
  i32 N, Q;
  std::cin >> N >> Q;
  std::vector<f64> angle(N), length(N, 1.0);
  segment_tree<st_monoid> seg;
  using type = typename st_monoid::value_structure::type;
  {
    std::vector<type> build;
    build.reserve(N);
    for (auto i: range(0, N)) {
      build.push_back(type{ std::polar(length[i], angle[i]), angle[i] });
    }
    seg.construct(build.begin(), build.end());
  }
  while (Q--) {
    i32 t, i;
    std::cin >> t >> i;
    --i;
    if (t == 0) {
      std::cin >> angle[i];
      angle[i] = angle[i] * pi / 180.0;
      seg.assign(i, type{ std::polar(length[i], angle[i]), angle[i] });
    }
    else if (t == 1) {
      std::cin >> length[i];
      seg.assign(i, type{ std::polar(length[i], angle[i]), angle[i] }); 
    }
    else {
      const auto z = seg.fold(0, i + 1).coord;
      std::cout << z.real() << ' ' << z.imag() << '\n';
    }
  }
  return 0;
}
0