結果
| 問題 |
No.1226 I hate Robot Arms
|
| コンテスト | |
| ユーザー |
KoD
|
| 提出日時 | 2020-09-11 23:29:04 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 231 ms / 2,000 ms |
| コード長 | 14,241 bytes |
| コンパイル時間 | 1,170 ms |
| コンパイル使用メモリ | 109,492 KB |
| 最終ジャッジ日時 | 2025-01-14 11:55:34 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 28 |
ソースコード
#line 1 "main.cpp"
/**
* @title Template
*/
#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
#include <cassert>
#include <cmath>
#include <iomanip>
#include <complex>
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/chmin_chmax.cpp"
template <class T, class U>
constexpr bool chmin(T &lhs, const U &rhs) {
if (lhs > rhs) { lhs = rhs; return true; }
return false;
}
template <class T, class U>
constexpr bool chmax(T &lhs, const U &rhs) {
if (lhs < rhs) { lhs = rhs; return true; }
return false;
}
/**
* @title Chmin/Chmax
*/
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"
#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"
class range {
public:
class iterator {
private:
int64_t M_position;
public:
constexpr iterator(int64_t position) noexcept: M_position(position) { }
constexpr void operator ++ () noexcept { ++M_position; }
constexpr bool operator != (iterator other) const noexcept { return M_position != other.M_position; }
constexpr int64_t operator * () const noexcept { return M_position; }
};
class reverse_iterator {
private:
int64_t M_position;
public:
constexpr reverse_iterator(int64_t position) noexcept: M_position(position) { }
constexpr void operator ++ () noexcept { --M_position; }
constexpr bool operator != (reverse_iterator other) const noexcept { return M_position != other.M_position; }
constexpr int64_t operator * () const noexcept { return M_position; }
};
private:
const iterator M_first, M_last;
public:
constexpr range(int64_t first, int64_t last) noexcept: M_first(first), M_last(std::max(first, last)) { }
constexpr iterator begin() const noexcept { return M_first; }
constexpr iterator end() const noexcept { return M_last; }
constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator(*M_last - 1); }
constexpr reverse_iterator rend() const noexcept { return reverse_iterator(*M_first - 1); }
};
/**
* @title Range
*/
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp"
#include <type_traits>
#include <iterator>
#line 6 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp"
template <class T>
class rev_impl {
public:
using iterator = decltype(std::rbegin(std::declval<T>()));
private:
const iterator M_begin;
const iterator M_end;
public:
constexpr rev_impl(T &&cont) noexcept: M_begin(std::rbegin(cont)), M_end(std::rend(cont)) { }
constexpr iterator begin() const noexcept { return M_begin; }
constexpr iterator end() const noexcept { return M_end; }
};
template <class T>
constexpr decltype(auto) rev(T &&cont) {
return rev_impl<T>(std::forward<T>(cont));
}
/**
* @title Reverser
*/
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp"
#include <type_traits>
#line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/other/monoid.cpp"
#include <stdexcept>
template <class T, class = void>
class has_identity: public std::false_type { };
template <class T>
class has_identity<T, typename std::conditional<false, decltype(T::identity()), void>::type>: public std::true_type { };
template <class T>
constexpr typename std::enable_if<has_identity<T>::value, typename T::type>::type empty_exception() {
return T::identity();
}
template <class T>
[[noreturn]] typename std::enable_if<!has_identity<T>::value, typename T::type>::type empty_exception() {
throw std::runtime_error("type T has no identity");
}
template <class T, bool HasIdentity>
class fixed_monoid_impl: public T {
public:
using type = typename T::type;
static constexpr type convert(const type &value) { return value; }
static constexpr type revert(const type &value) { return value; }
template <class Mapping, class Value, class... Args>
static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) {
value = func(value, op, std::forward<Args>(args)...);
}
template <class Constraint>
static constexpr bool satisfies(Constraint &&func, const type &value) {
return func(value);
}
};
template <class T>
class fixed_monoid_impl<T, false>: private T {
public:
class type {
public:
typename T::type value;
bool state;
explicit constexpr type(): value(typename T::type { }), state(false) { }
explicit constexpr type(const typename T::type &value): value(value), state(true) { }
};
static constexpr type convert(const typename T::type &value) { return type(value); }
static constexpr typename T::type revert(const type &value) {
if (!value.state) throw std::runtime_error("attempted to revert identity to non-monoid");
return value.value;
}
static constexpr type identity() { return type(); }
static constexpr type operation(const type &v1, const type &v2) {
if (!v1.state) return v2;
if (!v2.state) return v1;
return type(T::operation(v1.value, v2.value));
}
template <class Mapping, class Value, class... Args>
static constexpr void operate(Mapping &&func, Value &value, const type &op, Args&&... args) {
if (!op.state) return;
value = func(value, op.value, std::forward<Args>(args)...);
}
template <class Constraint>
static constexpr bool satisfies(Constraint &&func, const type &value) {
if (!value.state) return false;
return func(value.value);
}
};
template <class T>
using fixed_monoid = fixed_monoid_impl<T, has_identity<T>::value>;
/**
* @title Monoid Utility
*/
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/bit_operation.cpp"
#include <cstddef>
#include <cstdint>
constexpr size_t bit_ppc(const uint64_t x) { return __builtin_popcountll(x); }
constexpr size_t bit_ctzr(const uint64_t x) { return x == 0 ? 64 : __builtin_ctzll(x); }
constexpr size_t bit_ctzl(const uint64_t x) { return x == 0 ? 64 : __builtin_clzll(x); }
constexpr size_t bit_width(const uint64_t x) { return 64 - bit_ctzl(x); }
constexpr uint64_t bit_msb(const uint64_t x) { return x == 0 ? 0 : uint64_t(1) << (bit_width(x) - 1); }
constexpr uint64_t bit_lsb(const uint64_t x) { return x & (-x); }
constexpr uint64_t bit_cover(const uint64_t x) { return x == 0 ? 0 : bit_msb(2 * x - 1); }
constexpr uint64_t bit_rev(uint64_t x) {
x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1);
x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2);
x = ((x >> 4) & 0x0F0F0F0F0F0F0F0F) | ((x & 0x0F0F0F0F0F0F0F0F) << 4);
x = ((x >> 8) & 0x00FF00FF00FF00FF) | ((x & 0x00FF00FF00FF00FF) << 8);
x = ((x >> 16) & 0x0000FFFF0000FFFF) | ((x & 0x0000FFFF0000FFFF) << 16);
x = (x >> 32) | (x << 32);
return x;
}
/**
* @title Bit Operations
*/
#line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"
#line 11 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"
#include <type_traits>
#line 13 "/Users/kodamankod/Desktop/cpp_programming/Library/container/segment_tree.cpp"
template <class Monoid>
class segment_tree {
public:
using structure = Monoid;
using value_monoid = typename Monoid::value_structure;
using value_type = typename Monoid::value_structure::type;
using size_type = size_t;
private:
using fixed_value_monoid = fixed_monoid<value_monoid>;
using fixed_value_type = typename fixed_value_monoid::type;
std::vector<fixed_value_type> M_tree;
void M_fix_change(const size_type index) {
M_tree[index] = fixed_value_monoid::operation(M_tree[index << 1 | 0], M_tree[index << 1 | 1]);
}
public:
segment_tree() = default;
explicit segment_tree(const size_type size) { initialize(size); }
template <class InputIterator>
explicit segment_tree(InputIterator first, InputIterator last) { construct(first, last); }
void initialize(const size_type size) {
clear();
M_tree.assign(size << 1, fixed_value_monoid::identity());
}
template <class InputIterator>
void construct(InputIterator first, InputIterator last) {
clear();
const size_type size = std::distance(first, last);
M_tree.reserve(size << 1);
M_tree.assign(size, fixed_value_monoid::identity());
std::transform(first, last, std::back_inserter(M_tree), [&](const value_type &value) {
return fixed_value_monoid::convert(value);
});
for (size_type index = size - 1; index != 0; --index) {
M_fix_change(index);
}
}
void assign(size_type index, const value_type &value) {
assert(index < size());
index += size();
M_tree[index] = fixed_value_monoid::convert(value);
while (index != 1) {
index >>= 1;
M_fix_change(index);
}
}
value_type at(const size_type index) const {
assert(index < size());
return fixed_value_monoid::revert(M_tree[index + size()]);
}
value_type fold(size_type first, size_type last) const {
assert(first <= last);
assert(last <= size());
first += size();
last += size();
fixed_value_type fold_l = fixed_value_monoid::identity();
fixed_value_type fold_r = fixed_value_monoid::identity();
while (first != last) {
if (first & 1) {
fold_l = fixed_value_monoid::operation(fold_l, M_tree[first]);
++first;
}
if (last & 1) {
--last;
fold_r = fixed_value_monoid::operation(M_tree[last], fold_r);
}
first >>= 1;
last >>= 1;
}
return fixed_value_monoid::revert(fixed_value_monoid::operation(fold_l, fold_r));
}
template <bool ToRight = true, class Constraint, std::enable_if_t<ToRight>* = nullptr>
size_type satisfies(const size_type left, Constraint &&func) const {
assert(left <= size());
if (fixed_value_monoid::satisfies(std::forward<Constraint>(func),
fixed_value_monoid::identity())) return left;
size_type first = left + size();
size_type last = 2 * size();
const size_type last_c = last;
fixed_value_type fold = fixed_value_monoid::identity();
const auto try_merge = [&](const size_type index) {
fixed_value_type tmp = fixed_value_monoid::operation(fold, M_tree[index]);
if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), tmp)) return true;
fold = std::move(tmp);
return false;
};
const auto subtree = [&](size_type index) {
while (index < size()) {
index <<= 1;
if (!try_merge(index)) ++index;
}
return index - size() + 1;
};
size_type story = 0;
while (first < last) {
if (first & 1) {
if (try_merge(first)) return subtree(first);
++first;
}
first >>= 1;
last >>= 1;
++story;
}
while (story--) {
last = last_c >> story;
if (last & 1) {
--last;
if (try_merge(last)) return subtree(last);
}
}
return size() + 1;
}
template <bool ToRight = true, class Constraint, std::enable_if_t<!ToRight>* = nullptr>
size_type satisfies(const size_type right, Constraint &&func) const {
assert(right <= size());
if (fixed_value_monoid::satisfies(std::forward<Constraint>(func),
fixed_value_monoid::identity())) return right;
size_type first = size();
size_type last = right + size();
const size_type first_c = first;
fixed_value_type fold = fixed_value_monoid::identity();
const auto try_merge = [&](const size_type index) {
fixed_value_type tmp = fixed_value_monoid::operation(M_tree[index], fold);
if (fixed_value_monoid::satisfies(std::forward<Constraint>(func), tmp)) return true;
fold = std::move(tmp);
return false;
};
const auto subtree = [&](size_type index) {
while (index < size()) {
index <<= 1;
if (try_merge(index + 1)) ++index;
}
return index - size();
};
size_type story = 0;
while (first < last) {
if (first & 1) ++first;
if (last & 1) {
--last;
if (try_merge(last)) return subtree(last);
}
first >>= 1;
last >>= 1;
++story;
}
const size_type cover = bit_cover(first_c);
while (story--) {
first = (cover >> story) - ((cover - first_c) >> story);
if (first & 1) {
if (try_merge(first)) return subtree(first);
}
}
return size_type(-1);
}
void clear() {
M_tree.clear();
M_tree.shrink_to_fit();
}
size_type size() const {
return M_tree.size() >> 1;
}
};
/**
* @title Segment Tree
*/
#line 21 "main.cpp"
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
constexpr i32 inf32 = (i32(1) << 30) - 1;
constexpr i64 inf64 = (i64(1) << 62) - 1;
using f32 = float;
using f64 = double;
using f80 = long double;
struct st_monoid {
struct value_structure {
struct type {
std::complex<f64> coord;
f64 theta;
};
static type identity() { return type { std::complex<f64>(), f64() }; }
static type operation(const type& v1, const type& v2) {
return type{ v1.coord + std::polar(1.0, v1.theta) * v2.coord, v1.theta + v2.theta };
}
};
};
constexpr f64 pi = std::acos(-1.0);
int main() {
std::cout << std::fixed << std::setprecision(10);
std::ios_base::sync_with_stdio(false);
std::cin.tie(nullptr);
i32 N, Q;
std::cin >> N >> Q;
std::vector<f64> angle(N), length(N, 1.0);
segment_tree<st_monoid> seg;
using type = typename st_monoid::value_structure::type;
{
std::vector<type> build;
build.reserve(N);
for (auto i: range(0, N)) {
build.push_back(type{ std::polar(length[i], angle[i]), angle[i] });
}
seg.construct(build.begin(), build.end());
}
while (Q--) {
i32 t, i;
std::cin >> t >> i;
--i;
if (t == 0) {
std::cin >> angle[i];
angle[i] = angle[i] * pi / 180.0;
seg.assign(i, type{ std::polar(length[i], angle[i]), angle[i] });
}
else if (t == 1) {
std::cin >> length[i];
seg.assign(i, type{ std::polar(length[i], angle[i]), angle[i] });
}
else {
const auto z = seg.fold(0, i + 1).coord;
std::cout << z.real() << ' ' << z.imag() << '\n';
}
}
return 0;
}
KoD