結果

問題 No.1226 I hate Robot Arms
ユーザー kiyoshi0205kiyoshi0205
提出日時 2020-09-11 23:37:49
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 9,088 bytes
コンパイル時間 2,076 ms
コンパイル使用メモリ 182,332 KB
最終ジャッジ日時 2025-01-01 22:21:35
合計ジャッジ時間 2,987 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:325:24: warning: narrowing conversion of ‘i’ from ‘ll’ {aka ‘long long int’} to ‘double’ [-Wnarrowing]
  325 |   rep(i,N+1)first[i]=S{i,0};
      |                        ^
In file included from /usr/include/c++/13/string:43,
                 from /usr/include/c++/13/bitset:52,
                 from /usr/include/x86_64-linux-gnu/c++/13/bits/stdc++.h:52,
                 from main.cpp:4:
/usr/include/c++/13/bits/allocator.h: In destructor ‘std::_Vector_base<long long int, std::allocator<long long int> >::_Vector_impl::~_Vector_impl()’:
/usr/include/c++/13/bits/allocator.h:184:7: error: inlining failed in call to ‘always_inline’ ‘std::allocator< <template-parameter-1-1> >::~allocator() noexcept [with _Tp = long long int]’: target specific option mismatch
  184 |       ~allocator() _GLIBCXX_NOTHROW { }
      |       ^
In file included from /usr/include/c++/13/vector:66,
                 from /usr/include/c++/13/queue:63,
                 from /usr/include/x86_64-linux-gnu/c++/13/bits/stdc++.h:157:
/usr/include/c++/13/bits/stl_vector.h:133:14: note: called from here
  133 |       struct _Vector_impl
      |              ^~~~~~~~~~~~

ソースコード

diff #

#pragma GCC target("avx")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
// #include<ext/pb_ds/assoc_container.hpp>
// #include<ext/pb_ds/tree_policy.hpp>
// #include<ext/pb_ds/tag_and_trait.hpp>
// using namespace __gnu_pbds;
// #include<boost/multiprecision/cpp_int.hpp>
// namespace multiprecisioninteger = boost::multiprecision;
// using cint=multiprecisioninteger::cpp_int;
using namespace std;
using ll=long long;
// #define double long double
using datas=pair<ll,ll>;
using ddatas=pair<double,double>;
using tdata=pair<ll,datas>;
using vec=vector<ll>;
using mat=vector<vec>;
using pvec=vector<datas>;
using pmat=vector<pvec>;
// using llset=tree<ll,null_type,less<ll>,rb_tree_tag,tree_order_statistics_node_update>;
#define For(i,a,b) for(i=a;i<(ll)b;++i)
#define bFor(i,b,a) for(i=b,--i;i>=(ll)a;--i)
#define rep(i,N) For(i,0,N)
#define rep1(i,N) For(i,1,N)
#define brep(i,N) bFor(i,N,0)
#define brep1(i,N) bFor(i,N,1)
#define all(v) (v).begin(),(v).end()
#define allr(v) (v).rbegin(),(v).rend()
#define vsort(v) sort(all(v))
#define vrsort(v) sort(allr(v))
#define endl "\n"
#define eb emplace_back
#define print(v) cout<<v<<endl
#define printyes cout<<"Yes"<<endl
#define printno cout<<"No"<<endl
#define printYES cout<<"YES"<<endl
#define printNO cout<<"NO"<<endl
#define output(v) do{bool f=0;for(auto outi:v){cout<<(f?" ":"")<<outi;f=1;}cout<<endl;}while(0)
#define matoutput(v) do{for(auto outimat:v)output(outimat);}while(0)
const ll mod=1000000007;
// const ll mod=998244353;
const ll inf=1LL<<60;
const double PI = acos(-1);
const double eps = 1e-9;
template<class T> inline bool chmax(T& a,T b){bool x=a<b;if(x)a=b;return x;} 
template<class T> inline bool chmin(T& a,T b){bool x=a>b;if(x)a=b;return x;} 

void startupcpp(){
  cin.tie(0);
  ios::sync_with_stdio(false);
  cout<<fixed<<setprecision(15);
}

double distance(ddatas x,ddatas y){
  double a=x.first-y.first,b=x.second-y.second;
  return sqrt(a*a+b*b);
}

ll modinv(ll a) {
  ll b=mod,u=1,v=0,t;
  while(b){
    t=a/b;
    a-=t*b; swap(a,b);
    u-=t*v; swap(u,v);
  }
  return (u+mod)%mod;
}

ll moddevide(ll a,ll b){return (a*modinv(b))%mod;}

vec modncrlistp,modncrlistm;

ll modncr(ll n,ll r){
  if(n<r)return 0;
  ll i,size=modncrlistp.size();
  if(size<=n){
    modncrlistp.resize(n+1);
    modncrlistm.resize(n+1);
    if(!size){
      modncrlistp[0]=modncrlistm[0]=1;
      size++;
    }
    For(i,size,n+1){
      modncrlistp[i]=modncrlistp[i-1]*i%mod;
      modncrlistm[i]=modinv(modncrlistp[i]);
    }
  }
  return modncrlistp[n]*modncrlistm[r]%mod*modncrlistm[n-r]%mod;
}

ll modpow(ll a,ll n){
  ll res=1;
  while(n>0){
    if(n&1)res=res*a%mod;
    a=a*a%mod;
    n>>=1;
  }
  return res;
}

ll gcd(ll a,ll b){if(!b)return abs(a);return (a%b==0)?abs(b):gcd(b,a%b);}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}

ll countdigits(ll n){
  ll ans=0;
  while(n){n/=10;ans++;}
  return ans;
}

ll sumdigits(ll n){
  ll ans=0;
  while(n){ans+=n%10;n/=10;}
  return ans;
}
namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}
}
template <class S,
          S (*op)(S, S),
          S (*e)(),
          class F,
          S (*mapping)(F, S),
          F (*composition)(F, F),
          F (*id)()>
struct lazy_segtree {
  public:
    lazy_segtree() : lazy_segtree(0) {}
    lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
    lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push(r >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;
    std::vector<F> lz;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
};
struct S{
  double x,y;
};
struct F{
  double timex,timey,sumx,sumy;
};
S op(S l,S r){
  return l;
}
S e(){return S{0,0};}
S mapping(F f,S x){
return S{x.x*f.timex-x.y*f.timey+f.sumx,x.x*f.timey+x.y*f.timex+f.sumy};
}
F composition(F y,F x){
  double a=x.timex,b=x.timey,c=x.sumx,d=x.sumy,e=y.timex,f=y.timey,g=y.sumx,h=y.sumy;
  return F{a*e-b*f,a*f+b*e,c*e-d*f+g,c*f+d*e+h};
}
F id(){return F{1,0,0,0};}
int main(){
  startupcpp();
  // int codeforces;cin>>codeforces;while(codeforces--){
  ll i,j;
  ll N,K;
  cin>>N>>K;
  vector<S> first(N+1);
  rep(i,N+1)first[i]=S{i,0};
  lazy_segtree<S,op,e,F,mapping,composition,id> tree(first);
  vec nowlen(N,1),nowdeg(N,0);

  while(K--){
    cin>>i;
    if(i==0){
      cin>>i>>j;
      ll A=j+360-nowdeg[--i];
      S res=tree.get(i);
      tree.apply(i+1,N+1,F{1,0,-res.x,-res.y});
      tree.apply(i+1,N+1,F{cos(A*PI/180),sin(A*PI/180),res.x,res.y});
      nowdeg[i]=j;
    }else if(i==1){
      cin>>i>>j;
      S a=tree.get(i-1),b=tree.get(i);
      --i;
      tree.apply(i+1,N+1,F{1,0,(b.x-a.x)*(j-nowlen[i])/nowlen[i],(b.y-a.y)*(j-nowlen[i])/nowlen[i]});
      nowlen[i]=j;
    }else{
      cin>>i;
      S res=tree.get(i);
      print(res.x<<" "<<res.y);
    }
  }
}
0