結果

問題 No.1226 I hate Robot Arms
ユーザー 🍮かんプリン🍮かんプリン
提出日時 2020-09-12 00:01:33
言語 C++11
(gcc 13.3.0)
結果
TLE  
実行時間 -
コード長 7,633 bytes
コンパイル時間 1,929 ms
コンパイル使用メモリ 180,880 KB
実行使用メモリ 88,520 KB
最終ジャッジ日時 2025-01-01 22:52:04
合計ジャッジ時間 43,651 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 3 ms
6,816 KB
testcase_02 AC 611 ms
14,208 KB
testcase_03 AC 744 ms
24,832 KB
testcase_04 AC 1,065 ms
88,196 KB
testcase_05 AC 963 ms
88,296 KB
testcase_06 TLE -
testcase_07 AC 560 ms
14,208 KB
testcase_08 AC 391 ms
88,156 KB
testcase_09 AC 1,349 ms
24,704 KB
testcase_10 AC 145 ms
8,960 KB
testcase_11 AC 1,226 ms
88,092 KB
testcase_12 AC 599 ms
45,824 KB
testcase_13 AC 585 ms
88,368 KB
testcase_14 AC 1,704 ms
24,832 KB
testcase_15 AC 316 ms
88,228 KB
testcase_16 TLE -
testcase_17 AC 551 ms
24,832 KB
testcase_18 AC 382 ms
24,832 KB
testcase_19 AC 1,235 ms
88,236 KB
testcase_20 AC 1,137 ms
88,148 KB
testcase_21 AC 1,521 ms
88,084 KB
testcase_22 TLE -
testcase_23 TLE -
testcase_24 TLE -
testcase_25 TLE -
testcase_26 TLE -
testcase_27 TLE -
testcase_28 TLE -
testcase_29 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 *   @FileName	a.cpp
 *   @Author	kanpurin
 *   @Created	2020.09.12 00:01:28
**/

#include "bits/stdc++.h" 
using namespace std; 
typedef long long ll;


template < class Monoid >
struct SegmentTree {
private:
    using Func = std::function< Monoid(Monoid, Monoid) >;
    Func F;
    Monoid UNITY;
    int n;
    std::vector< Monoid > node;
public:
    SegmentTree() {}
    SegmentTree(const std::vector< Monoid > &v, const Func f, const Monoid &unity) {
        F = f;
        UNITY = unity;
        int sz = v.size();
        n = 1;
        while (n < sz) n <<= 1;
        node.resize(n * 2 - 1, UNITY);
        for (int i = 0; i < sz; i++) node[i + n - 1] = v[i];
        build();
    }
    
    SegmentTree(int m, const Monoid &val, const Func f, const Monoid &unity) {
        F = f;
        UNITY = unity;
        n = 1;
        while (n < m) n <<= 1;
        node.resize(n * 2 - 1, UNITY);
        if (val != UNITY) {
            for (int i = 0; i < m; i++) node[i + n - 1] = val;
            build();
        }
    }
    
    void set(int k, const Monoid &x) {
        node[n + k - 1] = x;
    }
    void build() {
        for (int i = n - 2; i >= 0; i--) node[i] = F(node[2 * i + 1], node[2 * i + 2]);
    }
    void update_query(int x, const Monoid &val) {
        if (x >= n || x < 0) return;
        x += n - 1;
        node[x] = val;
        while (x > 0) {
            x = (x - 1) >> 1;
            node[x] = F(node[2 * x + 1], node[2 * x + 2]);
        }
    }
    /*
    
    Monoid query(int a, int b, int k = 0, int l = 0, int r = -1) {
        if (r < 0) r = n;
        if (r <= a || b <= l) return UNITY;
        if (a <= l && r <= b) return node[k];
        Monoid vl = query(a, b, 2 * k + 1, l, (r - l) / 2 + l);
        Monoid vr = query(a, b, 2 * k + 2, (r - l) / 2 + l, r);
        return F(vl, vr);
    }
    */
    
    Monoid get_query(int a, int b) {
        Monoid L = UNITY, R = UNITY;
        if (a < 0) a = 0;
        if (b < 0) return UNITY;
        if (a >= n) return UNITY;
        if (b >= n) b = n;
        for (a += n, b += n; a < b; a >>= 1, b >>= 1) {
            if (a & 1) L = F(L, node[a++ - 1]);
            if (b & 1) R = F(node[--b - 1], R);
        }
        return F(L, R);
    }
    Monoid operator[](int x) const {
        return node[n + x - 1];
    }
    int size() {
        return n;
    }
    void print() {
        for (int i = 0; i < n; i++) {
            std::cout << i << "\t: " << node[n + i - 1] << std::endl;
        }
    }
};
template< class T >
struct Matrix {
    std::vector< std::vector< T > > A;
    Matrix() {}
    Matrix(size_t n, size_t m) : A(n, std::vector< T >(m, 0)) {}
    Matrix(size_t n) : A(n, std::vector< T >(n, 0)) {};
    size_t height() const {
        return (A.size());
    }
    size_t width() const {
        return (A[0].size());
    }
    inline const std::vector< T > &operator[](int k) const {
        return (A.at(k));
    }
    inline std::vector< T > &operator[](int k) {
        return (A.at(k));
    }
    static Matrix I(size_t n) {
        Matrix mat(n);
        for (int i = 0; i < n; i++) mat[i][i] = 1;
        return (mat);
    }
    Matrix &operator+=(const Matrix &B) {
        size_t n = height(), m = width();
        assert(n == B.height() && m == B.width());
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                (*this)[i][j] += B[i][j];
        return (*this);
    }
    Matrix &operator-=(const Matrix &B) {
        size_t n = height(), m = width();
        assert(n == B.height() && m == B.width());
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                (*this)[i][j] -= B[i][j];
        return (*this);
    }
    Matrix &operator*=(const Matrix &B) {
        size_t n = height(), m = B.width(), p = width();
        assert(p == B.height());
        std::vector< std::vector< T > > C(n, std::vector< T >(m, 0));
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                for (int k = 0; k < p; k++)
                    C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
        A.swap(C);
        return (*this);
    }
    Matrix operator+(const Matrix &B) const {
        return (Matrix(*this) += B);
    }
    Matrix operator-(const Matrix &B) const {
        return (Matrix(*this) -= B);
    }
    Matrix operator*(const Matrix &B) const {
        return (Matrix(*this) *= B);
    }
    bool operator==(const Matrix &B) const {
        assert(this->A.size() == B.A.size() && this->A[0].size() == B.A[0].size());
        int n = this->A.size();
        int m = this->A[0].size();
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                if (this->A[i][j] != B.A[i][j]) return false;
        return true;
    }
    bool operator!=(const Matrix &B) const {
        return !(*this == B);
    }
    friend std::ostream &operator<<(std::ostream &os, Matrix &p) {
        size_t n = p.height(), m = p.width();
        for (int i = 0; i < n; i++) {
            os << "[";
            for (int j = 0; j < m; j++) {
                os << p[i][j] << (j + 1 == m ? "]\n" : ",");
            }
        }
        return (os);
    }
    
    T determinant() {
        Matrix B(*this);
        assert(width() == height());
        T ret = 1;
        for (int i = 0; i < width(); i++) {
            int idx = -1;
            for (int j = i; j < width(); j++) {
                if (B[j][i] != 0) idx = j;
            }
            if (idx == -1) return (0);
            if (i != idx) {
                ret *= -1;
                swap(B[i], B[idx]);
            }
            ret *= B[i][i];
            T vv = B[i][i];
            for (int j = 0; j < width(); j++) {
                B[i][j] /= vv;
            }
            for (int j = i + 1; j < width(); j++) {
                T a = B[j][i];
                for (int k = 0; k < width(); k++) {
                    B[j][k] -= B[i][k] * a;
                }
            }
        }
        return (ret);
    }
    
    
    Matrix pow(ll k) const {
        auto res = I(A.size());
        auto M = *this;
        while (k > 0) {
            if (k & 1) {
                res *= M;
            }
            M *= M;
            k >>= 1;
        }
        return res;
    }
};
#define MAT Matrix<double>
int main() {
    int n,q;cin >> n >> q;
    MAT init(4);
    init[0][0] = init[1][1] = init[2][2] = init[3][3] = 1;
    init[0][2] = init[1][3] = 1;
    SegmentTree<MAT> seg(n,init,[](MAT a,MAT b){return b*a;},MAT::I(4));
    const double PI = 3.141592653589;
    vector<int> d(n,1), sita(n,0);
    while(q--) {
        int t;cin >> t;
        
        if (t == 0) {
            int i,x;cin >> i >> x;
            auto mat = seg.get_query(i-1,i);
            sita[i-1] = x;
            mat[2][2] = mat[3][3] = cos(x/180.0*PI);
            mat[3][2] = sin(x/180.0*PI);
            mat[2][3] = -mat[3][2];
            mat[0][2] = mat[1][3] = d[i-1]*cos(sita[i-1]/180.0*PI);
            mat[1][2] = d[i-1]*sin(sita[i-1]/180.0*PI);
            mat[0][3] = -mat[1][2];
            seg.update_query(i-1,mat);
        }
        
        else if (t == 1) {
            int i,x;cin >> i >> x;
            auto mat = seg.get_query(i-1,i);
            d[i-1] = x;
            mat[0][2] = mat[1][3] = d[i-1]*cos(sita[i-1]/180.0*PI);
            mat[1][2] = d[i-1]*sin(sita[i-1]/180.0*PI);
            mat[0][3] = -mat[1][2];
            seg.update_query(i-1,mat);
        } 
        else {
            int i;cin >> i;
            auto ans = seg.get_query(0,i);
            printf("%.10f %.10f\n",ans[0][2],ans[1][2]);
        }
    }
    return 0;
}
0