結果
問題 | No.1226 I hate Robot Arms |
ユーザー | くれちー |
提出日時 | 2020-09-12 00:30:17 |
言語 | Rust (1.77.0 + proconio) |
結果 |
WA
|
実行時間 | - |
コード長 | 12,362 bytes |
コンパイル時間 | 11,805 ms |
コンパイル使用メモリ | 377,084 KB |
実行使用メモリ | 17,232 KB |
最終ジャッジ日時 | 2024-06-10 11:12:24 |
合計ジャッジ時間 | 15,659 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
ソースコード
// The main code is at the very bottom. #[allow(unused_imports)] use { lib::byte::ByteChar, std::cell::{Cell, RefCell}, std::cmp::{ self, Ordering::{self, *}, Reverse, }, std::collections::*, std::convert::identity, std::fmt::{self, Debug, Display, Formatter}, std::io::prelude::*, std::iter::{self, FromIterator}, std::marker::PhantomData, std::mem, std::num::Wrapping, std::ops::{Range, RangeFrom, RangeInclusive, RangeTo, RangeToInclusive}, std::process, std::rc::Rc, std::thread, std::time::{Duration, Instant}, std::{char, f32, f64, i128, i16, i32, i64, i8, isize, str, u128, u16, u32, u64, u8, usize}, }; #[allow(unused_imports)] #[macro_use] pub mod lib { pub mod byte { pub use self::byte_char::*; mod byte_char { use std::error::Error; use std::fmt::{self, Debug, Display, Formatter}; use std::str::FromStr; #[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)] #[repr(transparent)] pub struct ByteChar(pub u8); impl Debug for ByteChar { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "b'{}'", self.0 as char) } } impl Display for ByteChar { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "{}", self.0 as char) } } impl FromStr for ByteChar { type Err = ParseByteCharError; fn from_str(s: &str) -> Result<ByteChar, ParseByteCharError> { match s.as_bytes().len() { 1 => Ok(ByteChar(s.as_bytes()[0])), 0 => Err(ParseByteCharErrorKind::EmptyStr.into()), _ => Err(ParseByteCharErrorKind::TooManyBytes.into()), } } } #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] pub struct ParseByteCharError { kind: ParseByteCharErrorKind, } impl Display for ParseByteCharError { fn fmt(&self, f: &mut Formatter) -> fmt::Result { f.write_str(match self.kind { ParseByteCharErrorKind::EmptyStr => "empty string", ParseByteCharErrorKind::TooManyBytes => "too many bytes", }) } } impl Error for ParseByteCharError {} #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] enum ParseByteCharErrorKind { EmptyStr, TooManyBytes, } impl From<ParseByteCharErrorKind> for ParseByteCharError { fn from(kind: ParseByteCharErrorKind) -> ParseByteCharError { ParseByteCharError { kind } } } } } pub mod io { pub use self::scanner::*; mod scanner { use std::io::{self, BufRead}; use std::iter; use std::str::FromStr; #[derive(Debug)] pub struct Scanner<R> { reader: R, buf: String, pos: usize, } impl<R: BufRead> Scanner<R> { pub fn new(reader: R) -> Self { Scanner { reader, buf: String::new(), pos: 0, } } pub fn next(&mut self) -> io::Result<&str> { let start = loop { match self.rest().find(|c| c != ' ') { Some(i) => break i, None => self.fill_buf()?, } }; self.pos += start; let len = self.rest().find(' ').unwrap_or(self.rest().len()); let s = &self.buf[self.pos..][..len]; // self.rest()[..len] self.pos += len; Ok(s) } pub fn parse_next<T>(&mut self) -> io::Result<Result<T, T::Err>> where T: FromStr, { Ok(self.next()?.parse()) } pub fn parse_next_n<T>(&mut self, n: usize) -> io::Result<Result<Vec<T>, T::Err>> where T: FromStr, { iter::repeat_with(|| self.parse_next()).take(n).collect() } pub fn map_next_bytes<T, F>(&mut self, mut f: F) -> io::Result<Vec<T>> where F: FnMut(u8) -> T, { Ok(self.next()?.bytes().map(&mut f).collect()) } pub fn map_next_bytes_n<T, F>(&mut self, n: usize, mut f: F) -> io::Result<Vec<Vec<T>>> where F: FnMut(u8) -> T, { iter::repeat_with(|| self.map_next_bytes(&mut f)) .take(n) .collect() } fn rest(&self) -> &str { &self.buf[self.pos..] } fn fill_buf(&mut self) -> io::Result<()> { self.buf.clear(); self.pos = 0; let read = self.reader.read_line(&mut self.buf)?; if read == 0 { return Err(io::ErrorKind::UnexpectedEof.into()); } if *self.buf.as_bytes().last().unwrap() == b'\n' { self.buf.pop(); } Ok(()) } } } } } // port of https://ei1333.github.io/library/library/structure/segment-tree/segment-tree.cpp.html #[allow(unused_imports)] #[allow(non_snake_case)] pub mod segment_tree { pub struct SegmentTree<Monoid, F> { sz: usize, seg: Vec<Monoid>, f: F, M1: Monoid, } impl<Monoid, F> SegmentTree<Monoid, F> where Monoid: Clone + PartialEq, F: FnMut(&Monoid, &Monoid) -> Monoid, { pub fn new(n: usize, f: F, M1: Monoid) -> Self { let mut sz = 1; while sz < n { sz <<= 1; } Self { sz, seg: vec![M1.clone(); 2 * sz], f, M1, } } pub fn update(&mut self, mut k: usize, x: Monoid) { k += self.sz; self.seg[k] = x; while { k >>= 1; k != 0 } { self.seg[k] = (self.f)(&self.seg[2 * k + 0], &self.seg[2 * k + 1]); } } pub fn query(&mut self, mut a: usize, mut b: usize) -> Monoid { let mut L = self.M1.clone(); let mut R = self.M1.clone(); a += self.sz; b += self.sz; while a < b { if a & 1 != 0 { L = (self.f)(&L, &self.seg[a]); a += 1; } if b & 1 != 0 { b -= 1; R = (self.f)(&self.seg[b], &R); } a >>= 1; b >>= 1; } (self.f)(&L, &R) } pub fn get(&self, k: usize) -> &Monoid { &self.seg[k + self.sz] } } } // port of https://ei1333.github.io/library/library/structure/segment-tree/dual-segment-tree.cpp.html #[allow(unused_imports)] #[allow(non_snake_case)] pub mod dual_segment_tree { pub struct DualSegmentTree<OperatorMonoid, H> { sz: usize, height: usize, lazy: Vec<OperatorMonoid>, h: H, OM0: OperatorMonoid, } impl<OperatorMonoid, H> DualSegmentTree<OperatorMonoid, H> where OperatorMonoid: Clone + PartialEq, H: FnMut(&OperatorMonoid, &OperatorMonoid) -> OperatorMonoid, { pub fn new(n: usize, h: H, OM0: OperatorMonoid) -> Self { let mut sz = 1; let mut height = 0; while sz < n { sz <<= 1; height += 1; } Self { sz, height, lazy: vec![OM0.clone(); 2 * sz], h, OM0, } } fn propagate(&mut self, k: usize) { if self.lazy[k] != self.OM0 { self.lazy[2 * k + 0] = (self.h)(&self.lazy[2 * k + 0], &self.lazy[k]); self.lazy[2 * k + 1] = (self.h)(&self.lazy[2 * k + 1], &self.lazy[k]); self.lazy[k] = self.OM0.clone(); } } fn thrust(&mut self, k: usize) { let mut i = self.height; while i > 0 { self.propagate(k >> i); i -= 1; } } pub fn update(&mut self, mut a: usize, mut b: usize, x: &OperatorMonoid) { a += self.sz; self.thrust(a); b += self.sz - 1; self.thrust(b); let mut l = a; let mut r = b + 1; while l < r { if l & 1 != 0 { self.lazy[l] = (self.h)(&self.lazy[l], &x); l += 1; } if r & 1 != 0 { r -= 1; self.lazy[r] = (self.h)(&self.lazy[r], &x); } l >>= 1; r >>= 1; } } pub fn get(&mut self, mut k: usize) -> OperatorMonoid { k += self.sz; self.thrust(k); self.lazy[k].clone() } } } #[allow(unused_macros)] macro_rules! eprint { ($($arg:tt)*) => { if cfg!(debug_assertions) { std::eprint!($($arg)*) } }; } #[allow(unused_macros)] macro_rules! eprintln { ($($arg:tt)*) => { if cfg!(debug_assertions) { std::eprintln!($($arg)*) } }; } #[allow(unused_macros)] macro_rules! dbg { ($($arg:tt)*) => { if cfg!(debug_assertions) { std::dbg!($($arg)*) } else { ($($arg)*) } }; } const CUSTOM_STACK_SIZE_MIB: Option<usize> = Some(1024); const INTERACTIVE: bool = false; fn main() -> std::io::Result<()> { match CUSTOM_STACK_SIZE_MIB { Some(stack_size_mib) => std::thread::Builder::new() .name("run_solver".to_owned()) .stack_size(stack_size_mib * 1024 * 1024) .spawn(run_solver)? .join() .unwrap(), None => run_solver(), } } fn run_solver() -> std::io::Result<()> { let stdin = std::io::stdin(); let reader = stdin.lock(); let stdout = std::io::stdout(); let writer = stdout.lock(); macro_rules! with_wrapper { ($($wrapper:expr)?) => {{ let mut writer = $($wrapper)?(writer); solve(reader, &mut writer)?; writer.flush() }}; } if cfg!(debug_assertions) || INTERACTIVE { with_wrapper!() } else { with_wrapper!(std::io::BufWriter::new) } } fn solve<R, W>(reader: R, mut writer: W) -> std::io::Result<()> where R: BufRead, W: Write, { let mut _scanner = lib::io::Scanner::new(reader); #[allow(unused_macros)] macro_rules! scan { ($T:ty) => { _scanner.parse_next::<$T>()?.unwrap() }; ($($T:ty),+) => { ($(scan!($T)),+) }; ($T:ty; $n:expr) => { _scanner.parse_next_n::<$T>($n)?.unwrap() }; ($($T:ty),+; $n:expr) => { iter::repeat_with(|| -> std::io::Result<_> { Ok(($(scan!($T)),+)) }) .take($n) .collect::<std::io::Result<Vec<_>>>()? }; } #[allow(unused_macros)] macro_rules! scan_bytes_map { ($f:expr) => { _scanner.map_next_bytes($f)? }; ($f:expr; $n:expr) => { _scanner.map_next_bytes_n($n, $f)? }; } #[allow(unused_macros)] macro_rules! print { ($($arg:tt)*) => { write!(writer, $($arg)*)? }; } #[allow(unused_macros)] macro_rules! println { ($($arg:tt)*) => { writeln!(writer, $($arg)*)? }; } #[allow(unused_macros)] macro_rules! answer { ($($arg:tt)*) => {{ println!($($arg)*); return Ok(()); }}; } { use dual_segment_tree::*; use segment_tree::*; let (n, q) = scan!(usize, usize); const E: [[f64; 2]; 2] = [[1.0, 0.0], [0.0, 1.0]]; let apply = |[[a, b], [c, d]]: &[[f64; 2]; 2], r: &[f64; 2], l: &[f64; 2]| { [a * r[0] + b * r[1] + l[0], c * r[0] + d * r[1] + l[1]] }; let mut s_affine = DualSegmentTree::new( n + 1, |&([[e, f], [g, h]], r), &([[a, b], [c, d]], l)| { ( [ [a * e + b * g, a * f + b * h], [c * e + d * g, c * f + d * h], ], apply(&[[a, b], [c, d]], &r, &l), ) }, (E, [0.0, 0.0]), ); for i in 1..=n { s_affine.update(i, n + 1, &(E, [1.0, 0.0])); } let mut s_theta_sum = SegmentTree::new(n + 1, |l, r| l + r, 0.0); let mut len = vec![1.0; n + 1]; for _ in 0..q { match scan!(u8) { 0 => { let (i, x) = scan!(usize, f64); let (sin, cos) = x.to_radians().sin_cos(); let (a, b) = s_affine.get(i - 1); let [p, q] = apply(&a, &[0.0, 0.0], &b); s_affine.update(i, n + 1, &(E, [-p, -q])); s_affine.update(i, n + 1, &([[cos, -sin], [sin, cos]], [p, q])); s_theta_sum.update(i, x.to_radians()); } 1 => { let (i, x) = scan!(usize, f64); let (sin, cos) = s_theta_sum.query(1, i + 1).sin_cos(); let d = x - len[i]; s_affine.update(i, n + 1, &(E, [d * cos, d * sin])); len[i] = x; } 2 => { let i = scan!(usize); let (a, b) = s_affine.get(i); let [p, q] = apply(&a, &[0.0, 0.0], &b); println!("{} {}", p, q); } _ => unreachable!(), } } } #[allow(unreachable_code)] Ok(()) }