結果
| 問題 |
No.1226 I hate Robot Arms
|
| コンテスト | |
| ユーザー |
くれちー
|
| 提出日時 | 2020-09-12 00:30:17 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 12,362 bytes |
| コンパイル時間 | 11,762 ms |
| コンパイル使用メモリ | 406,140 KB |
| 実行使用メモリ | 19,112 KB |
| 最終ジャッジ日時 | 2025-01-01 23:02:11 |
| 合計ジャッジ時間 | 16,334 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | WA * 28 |
ソースコード
// The main code is at the very bottom.
#[allow(unused_imports)]
use {
lib::byte::ByteChar,
std::cell::{Cell, RefCell},
std::cmp::{
self,
Ordering::{self, *},
Reverse,
},
std::collections::*,
std::convert::identity,
std::fmt::{self, Debug, Display, Formatter},
std::io::prelude::*,
std::iter::{self, FromIterator},
std::marker::PhantomData,
std::mem,
std::num::Wrapping,
std::ops::{Range, RangeFrom, RangeInclusive, RangeTo, RangeToInclusive},
std::process,
std::rc::Rc,
std::thread,
std::time::{Duration, Instant},
std::{char, f32, f64, i128, i16, i32, i64, i8, isize, str, u128, u16, u32, u64, u8, usize},
};
#[allow(unused_imports)]
#[macro_use]
pub mod lib {
pub mod byte {
pub use self::byte_char::*;
mod byte_char {
use std::error::Error;
use std::fmt::{self, Debug, Display, Formatter};
use std::str::FromStr;
#[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct ByteChar(pub u8);
impl Debug for ByteChar {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "b'{}'", self.0 as char)
}
}
impl Display for ByteChar {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", self.0 as char)
}
}
impl FromStr for ByteChar {
type Err = ParseByteCharError;
fn from_str(s: &str) -> Result<ByteChar, ParseByteCharError> {
match s.as_bytes().len() {
1 => Ok(ByteChar(s.as_bytes()[0])),
0 => Err(ParseByteCharErrorKind::EmptyStr.into()),
_ => Err(ParseByteCharErrorKind::TooManyBytes.into()),
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub struct ParseByteCharError {
kind: ParseByteCharErrorKind,
}
impl Display for ParseByteCharError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
f.write_str(match self.kind {
ParseByteCharErrorKind::EmptyStr => "empty string",
ParseByteCharErrorKind::TooManyBytes => "too many bytes",
})
}
}
impl Error for ParseByteCharError {}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
enum ParseByteCharErrorKind {
EmptyStr,
TooManyBytes,
}
impl From<ParseByteCharErrorKind> for ParseByteCharError {
fn from(kind: ParseByteCharErrorKind) -> ParseByteCharError {
ParseByteCharError { kind }
}
}
}
}
pub mod io {
pub use self::scanner::*;
mod scanner {
use std::io::{self, BufRead};
use std::iter;
use std::str::FromStr;
#[derive(Debug)]
pub struct Scanner<R> {
reader: R,
buf: String,
pos: usize,
}
impl<R: BufRead> Scanner<R> {
pub fn new(reader: R) -> Self {
Scanner {
reader,
buf: String::new(),
pos: 0,
}
}
pub fn next(&mut self) -> io::Result<&str> {
let start = loop {
match self.rest().find(|c| c != ' ') {
Some(i) => break i,
None => self.fill_buf()?,
}
};
self.pos += start;
let len = self.rest().find(' ').unwrap_or(self.rest().len());
let s = &self.buf[self.pos..][..len]; // self.rest()[..len]
self.pos += len;
Ok(s)
}
pub fn parse_next<T>(&mut self) -> io::Result<Result<T, T::Err>>
where
T: FromStr,
{
Ok(self.next()?.parse())
}
pub fn parse_next_n<T>(&mut self, n: usize) -> io::Result<Result<Vec<T>, T::Err>>
where
T: FromStr,
{
iter::repeat_with(|| self.parse_next()).take(n).collect()
}
pub fn map_next_bytes<T, F>(&mut self, mut f: F) -> io::Result<Vec<T>>
where
F: FnMut(u8) -> T,
{
Ok(self.next()?.bytes().map(&mut f).collect())
}
pub fn map_next_bytes_n<T, F>(&mut self, n: usize, mut f: F) -> io::Result<Vec<Vec<T>>>
where
F: FnMut(u8) -> T,
{
iter::repeat_with(|| self.map_next_bytes(&mut f))
.take(n)
.collect()
}
fn rest(&self) -> &str {
&self.buf[self.pos..]
}
fn fill_buf(&mut self) -> io::Result<()> {
self.buf.clear();
self.pos = 0;
let read = self.reader.read_line(&mut self.buf)?;
if read == 0 {
return Err(io::ErrorKind::UnexpectedEof.into());
}
if *self.buf.as_bytes().last().unwrap() == b'\n' {
self.buf.pop();
}
Ok(())
}
}
}
}
}
// port of https://ei1333.github.io/library/library/structure/segment-tree/segment-tree.cpp.html
#[allow(unused_imports)]
#[allow(non_snake_case)]
pub mod segment_tree {
pub struct SegmentTree<Monoid, F> {
sz: usize,
seg: Vec<Monoid>,
f: F,
M1: Monoid,
}
impl<Monoid, F> SegmentTree<Monoid, F>
where
Monoid: Clone + PartialEq,
F: FnMut(&Monoid, &Monoid) -> Monoid,
{
pub fn new(n: usize, f: F, M1: Monoid) -> Self {
let mut sz = 1;
while sz < n {
sz <<= 1;
}
Self {
sz,
seg: vec![M1.clone(); 2 * sz],
f,
M1,
}
}
pub fn update(&mut self, mut k: usize, x: Monoid) {
k += self.sz;
self.seg[k] = x;
while {
k >>= 1;
k != 0
} {
self.seg[k] = (self.f)(&self.seg[2 * k + 0], &self.seg[2 * k + 1]);
}
}
pub fn query(&mut self, mut a: usize, mut b: usize) -> Monoid {
let mut L = self.M1.clone();
let mut R = self.M1.clone();
a += self.sz;
b += self.sz;
while a < b {
if a & 1 != 0 {
L = (self.f)(&L, &self.seg[a]);
a += 1;
}
if b & 1 != 0 {
b -= 1;
R = (self.f)(&self.seg[b], &R);
}
a >>= 1;
b >>= 1;
}
(self.f)(&L, &R)
}
pub fn get(&self, k: usize) -> &Monoid {
&self.seg[k + self.sz]
}
}
}
// port of https://ei1333.github.io/library/library/structure/segment-tree/dual-segment-tree.cpp.html
#[allow(unused_imports)]
#[allow(non_snake_case)]
pub mod dual_segment_tree {
pub struct DualSegmentTree<OperatorMonoid, H> {
sz: usize,
height: usize,
lazy: Vec<OperatorMonoid>,
h: H,
OM0: OperatorMonoid,
}
impl<OperatorMonoid, H> DualSegmentTree<OperatorMonoid, H>
where
OperatorMonoid: Clone + PartialEq,
H: FnMut(&OperatorMonoid, &OperatorMonoid) -> OperatorMonoid,
{
pub fn new(n: usize, h: H, OM0: OperatorMonoid) -> Self {
let mut sz = 1;
let mut height = 0;
while sz < n {
sz <<= 1;
height += 1;
}
Self {
sz,
height,
lazy: vec![OM0.clone(); 2 * sz],
h,
OM0,
}
}
fn propagate(&mut self, k: usize) {
if self.lazy[k] != self.OM0 {
self.lazy[2 * k + 0] = (self.h)(&self.lazy[2 * k + 0], &self.lazy[k]);
self.lazy[2 * k + 1] = (self.h)(&self.lazy[2 * k + 1], &self.lazy[k]);
self.lazy[k] = self.OM0.clone();
}
}
fn thrust(&mut self, k: usize) {
let mut i = self.height;
while i > 0 {
self.propagate(k >> i);
i -= 1;
}
}
pub fn update(&mut self, mut a: usize, mut b: usize, x: &OperatorMonoid) {
a += self.sz;
self.thrust(a);
b += self.sz - 1;
self.thrust(b);
let mut l = a;
let mut r = b + 1;
while l < r {
if l & 1 != 0 {
self.lazy[l] = (self.h)(&self.lazy[l], &x);
l += 1;
}
if r & 1 != 0 {
r -= 1;
self.lazy[r] = (self.h)(&self.lazy[r], &x);
}
l >>= 1;
r >>= 1;
}
}
pub fn get(&mut self, mut k: usize) -> OperatorMonoid {
k += self.sz;
self.thrust(k);
self.lazy[k].clone()
}
}
}
#[allow(unused_macros)]
macro_rules! eprint {
($($arg:tt)*) => {
if cfg!(debug_assertions) {
std::eprint!($($arg)*)
}
};
}
#[allow(unused_macros)]
macro_rules! eprintln {
($($arg:tt)*) => {
if cfg!(debug_assertions) {
std::eprintln!($($arg)*)
}
};
}
#[allow(unused_macros)]
macro_rules! dbg {
($($arg:tt)*) => {
if cfg!(debug_assertions) {
std::dbg!($($arg)*)
} else {
($($arg)*)
}
};
}
const CUSTOM_STACK_SIZE_MIB: Option<usize> = Some(1024);
const INTERACTIVE: bool = false;
fn main() -> std::io::Result<()> {
match CUSTOM_STACK_SIZE_MIB {
Some(stack_size_mib) => std::thread::Builder::new()
.name("run_solver".to_owned())
.stack_size(stack_size_mib * 1024 * 1024)
.spawn(run_solver)?
.join()
.unwrap(),
None => run_solver(),
}
}
fn run_solver() -> std::io::Result<()> {
let stdin = std::io::stdin();
let reader = stdin.lock();
let stdout = std::io::stdout();
let writer = stdout.lock();
macro_rules! with_wrapper {
($($wrapper:expr)?) => {{
let mut writer = $($wrapper)?(writer);
solve(reader, &mut writer)?;
writer.flush()
}};
}
if cfg!(debug_assertions) || INTERACTIVE {
with_wrapper!()
} else {
with_wrapper!(std::io::BufWriter::new)
}
}
fn solve<R, W>(reader: R, mut writer: W) -> std::io::Result<()>
where
R: BufRead,
W: Write,
{
let mut _scanner = lib::io::Scanner::new(reader);
#[allow(unused_macros)]
macro_rules! scan {
($T:ty) => {
_scanner.parse_next::<$T>()?.unwrap()
};
($($T:ty),+) => {
($(scan!($T)),+)
};
($T:ty; $n:expr) => {
_scanner.parse_next_n::<$T>($n)?.unwrap()
};
($($T:ty),+; $n:expr) => {
iter::repeat_with(|| -> std::io::Result<_> { Ok(($(scan!($T)),+)) })
.take($n)
.collect::<std::io::Result<Vec<_>>>()?
};
}
#[allow(unused_macros)]
macro_rules! scan_bytes_map {
($f:expr) => {
_scanner.map_next_bytes($f)?
};
($f:expr; $n:expr) => {
_scanner.map_next_bytes_n($n, $f)?
};
}
#[allow(unused_macros)]
macro_rules! print {
($($arg:tt)*) => {
write!(writer, $($arg)*)?
};
}
#[allow(unused_macros)]
macro_rules! println {
($($arg:tt)*) => {
writeln!(writer, $($arg)*)?
};
}
#[allow(unused_macros)]
macro_rules! answer {
($($arg:tt)*) => {{
println!($($arg)*);
return Ok(());
}};
}
{
use dual_segment_tree::*;
use segment_tree::*;
let (n, q) = scan!(usize, usize);
const E: [[f64; 2]; 2] = [[1.0, 0.0], [0.0, 1.0]];
let apply = |[[a, b], [c, d]]: &[[f64; 2]; 2], r: &[f64; 2], l: &[f64; 2]| {
[a * r[0] + b * r[1] + l[0], c * r[0] + d * r[1] + l[1]]
};
let mut s_affine = DualSegmentTree::new(
n + 1,
|&([[e, f], [g, h]], r), &([[a, b], [c, d]], l)| {
(
[
[a * e + b * g, a * f + b * h],
[c * e + d * g, c * f + d * h],
],
apply(&[[a, b], [c, d]], &r, &l),
)
},
(E, [0.0, 0.0]),
);
for i in 1..=n {
s_affine.update(i, n + 1, &(E, [1.0, 0.0]));
}
let mut s_theta_sum = SegmentTree::new(n + 1, |l, r| l + r, 0.0);
let mut len = vec![1.0; n + 1];
for _ in 0..q {
match scan!(u8) {
0 => {
let (i, x) = scan!(usize, f64);
let (sin, cos) = x.to_radians().sin_cos();
let (a, b) = s_affine.get(i - 1);
let [p, q] = apply(&a, &[0.0, 0.0], &b);
s_affine.update(i, n + 1, &(E, [-p, -q]));
s_affine.update(i, n + 1, &([[cos, -sin], [sin, cos]], [p, q]));
s_theta_sum.update(i, x.to_radians());
}
1 => {
let (i, x) = scan!(usize, f64);
let (sin, cos) = s_theta_sum.query(1, i + 1).sin_cos();
let d = x - len[i];
s_affine.update(i, n + 1, &(E, [d * cos, d * sin]));
len[i] = x;
}
2 => {
let i = scan!(usize);
let (a, b) = s_affine.get(i);
let [p, q] = apply(&a, &[0.0, 0.0], &b);
println!("{} {}", p, q);
}
_ => unreachable!(),
}
}
}
#[allow(unreachable_code)]
Ok(())
}
くれちー