結果
| 問題 | No.876 Range Compress Query |
| コンテスト | |
| ユーザー |
aru aru
|
| 提出日時 | 2020-10-05 22:53:19 |
| 言語 | Go (1.23.4) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,815 bytes |
| コンパイル時間 | 14,730 ms |
| コンパイル使用メモリ | 221,352 KB |
| 実行使用メモリ | 7,936 KB |
| 最終ジャッジ日時 | 2024-07-19 22:25:32 |
| 合計ジャッジ時間 | 17,761 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 14 WA * 4 |
ソースコード
package main
import (
"bufio"
"fmt"
"os"
"sort"
"strconv"
)
func out(x ...interface{}) {
fmt.Println(x...)
}
var sc = bufio.NewScanner(os.Stdin)
func getInt() int {
sc.Scan()
i, e := strconv.Atoi(sc.Text())
if e != nil {
panic(e)
}
return i
}
func getInts(N int) []int {
ret := make([]int, N)
for i := 0; i < N; i++ {
ret[i] = getInt()
}
return ret
}
func getString() string {
sc.Scan()
return sc.Text()
}
// min, max, asub, absなど基本関数
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func asub(a, b int) int {
if a > b {
return a - b
}
return b - a
}
func abs(a int) int {
if a >= 0 {
return a
}
return -a
}
func lowerBound(a []int, x int) int {
idx := sort.Search(len(a), func(i int) bool {
return a[i] >= x
})
return idx
}
func upperBound(a []int, x int) int {
idx := sort.Search(len(a), func(i int) bool {
return a[i] > x
})
return idx
}
func main() {
sc.Split(bufio.ScanWords)
sc.Buffer([]byte{}, 1000000)
N, Q := getInt(), getInt()
a := make([]S, N)
for i := 0; i < N; i++ {
a[i] = S{getInt()}
}
segL := SegtreeInit(N, 0)
for i := 1; i < N; i++ {
if a[i].a == a[i-1].a {
segL.Set(i-1, 1)
}
}
segL.Update()
seg := newLazySegtree(a, e, merger, mapper, comp, id)
for i := 0; i < Q; i++ {
op := getInt()
if op == 1 {
l, r, x := getInt()-1, getInt()-1, getInt()
seg.RangeApply(l, r+1, F{x})
p := seg.Prod(l, l+1)
q := seg.Prod(l+1, l+2)
if p.a == q.a {
segL.UpdateAt(l, 1)
} else {
segL.UpdateAt(l, 0)
}
p = seg.Prod(r, r+1)
q = seg.Prod(r+1, r+2)
if p.a == q.a {
segL.UpdateAt(r, 1)
} else {
segL.UpdateAt(r, 0)
}
} else {
l, r := getInt()-1, getInt()-1
p := int(segL.Query(l, r+1))
out(r - l + 1 - p)
}
// for j := 0; j < N; j++ {
// fmt.Print(seg.Prod(j, j+1), " ")
// }
// fmt.Println()
// for j := 0; j < N; j++ {
// fmt.Print(segL.Query(j, j+1), " ")
// }
// fmt.Println()
}
}
func e() S {
return S{-1}
}
func merger(l, r S) S {
if l.a > r.a {
return l
}
return r
}
func mapper(f F, x S) S {
return S{x.a + f.a}
}
func comp(f, g F) F {
return F{f.a + g.a}
}
func id() F {
return F{0}
}
type S struct {
a int
}
type F struct {
a int
}
type E func() S
type Merger func(a, b S) S
type Mapper func(f F, x S) S
type Comp func(f, g F) F
type Id func() F
type Compare func(v S) bool
type LazySegtree struct {
n int
size int
log int
d []S
lz []F
e E
merger Merger
mapper Mapper
comp Comp
id Id
}
func newLazySegtree(v []S, e E, merger Merger, mapper Mapper, comp Comp, id Id) *LazySegtree {
lseg := new(LazySegtree)
lseg.n = len(v)
lseg.log = lseg.ceilPow2(lseg.n)
lseg.size = 1 << uint(lseg.log)
lseg.d = make([]S, 2*lseg.size)
lseg.e = e
lseg.lz = make([]F, lseg.size)
lseg.merger = merger
lseg.mapper = mapper
lseg.comp = comp
lseg.id = id
for i, _ := range lseg.d {
lseg.d[i] = lseg.e()
}
for i, _ := range lseg.lz {
lseg.lz[i] = lseg.id()
}
for i := 0; i < lseg.n; i++ {
lseg.d[lseg.size+i] = v[i]
}
for i := lseg.size - 1; i >= 1; i-- {
lseg.Update(i)
}
return lseg
}
func (lseg *LazySegtree) Update(k int) {
lseg.d[k] = lseg.merger(lseg.d[2*k], lseg.d[2*k+1])
}
func (lseg *LazySegtree) AllApply(k int, f F) {
lseg.d[k] = lseg.mapper(f, lseg.d[k])
if k < lseg.size {
lseg.lz[k] = lseg.comp(f, lseg.lz[k])
}
}
func (lseg *LazySegtree) Push(k int) {
lseg.AllApply(2*k, lseg.lz[k])
lseg.AllApply(2*k+1, lseg.lz[k])
lseg.lz[k] = lseg.id()
}
func (lseg *LazySegtree) Set(p int, x S) {
p += lseg.size
for i := lseg.log; i <= 1; i-- {
lseg.Push(p >> uint(i))
}
lseg.d[p] = x
for i := 1; i <= lseg.log; i++ {
lseg.Update(p >> uint(i))
}
}
func (lseg *LazySegtree) Get(p int) S {
p += lseg.size
for i := lseg.log; i >= 1; i-- {
lseg.Push(p >> uint(i))
}
return lseg.d[p]
}
func (lseg *LazySegtree) Prod(l, r int) S {
if l == r {
return lseg.e()
}
l += lseg.size
r += lseg.size
for i := lseg.log; i >= 1; i-- {
if (l>>uint(i))<<uint(i) != l {
lseg.Push(l >> uint(i))
}
if (r>>uint(i))<<uint(i) != r {
lseg.Push(r >> uint(i))
}
}
sml, smr := lseg.e(), lseg.e()
for l < r {
if (l & 1) == 1 {
sml = lseg.merger(sml, lseg.d[l])
l++
}
if (r & 1) == 1 {
r--
smr = lseg.merger(lseg.d[r], smr)
}
l >>= 1
r >>= 1
}
return lseg.merger(sml, smr)
}
func (lseg *LazySegtree) AllProd() S {
return lseg.d[1]
}
func (lseg *LazySegtree) Apply(p int, f F) {
p += lseg.size
for i := lseg.log; i >= 1; i-- {
lseg.Push(p >> uint(i))
}
lseg.d[p] = lseg.mapper(f, lseg.d[p])
for i := 1; i <= lseg.log; i++ {
lseg.Update(p >> uint(i))
}
}
func (lseg *LazySegtree) RangeApply(l int, r int, f F) {
if l == r {
return
}
l += lseg.size
r += lseg.size
for i := lseg.log; i >= 1; i-- {
if (l>>uint(i))<<uint(i) != l {
lseg.Push(l >> uint(i))
}
if (r>>uint(i))<<uint(i) != r {
lseg.Push((r - 1) >> uint(i))
}
}
l2, r2 := l, r
for l < r {
if l&1 == 1 {
lseg.AllApply(l, f)
l++
}
if r&1 == 1 {
r--
lseg.AllApply(r, f)
}
l >>= 1
r >>= 1
}
l, r = l2, r2
for i := 1; i <= lseg.log; i++ {
if (l>>uint(i))<<uint(i) != l {
lseg.Update(l >> uint(i))
}
if (r>>uint(i))<<uint(i) != r {
lseg.Update((r - 1) >> uint(i))
}
}
}
func (lseg *LazySegtree) MaxRight(l int, cmp Compare) int {
if l == lseg.n {
return lseg.n
}
l += lseg.size
for i := lseg.log; i >= 1; i-- {
lseg.Push(l >> uint(i))
}
sm := lseg.e()
for {
for l%2 == 0 {
l >>= 1
}
if !cmp(lseg.merger(sm, lseg.d[l])) {
for l < lseg.size {
lseg.Push(l)
l = 2 * l
if cmp(lseg.merger(sm, lseg.d[l])) {
sm = lseg.merger(sm, lseg.d[l])
l++
}
}
return l - lseg.size
}
sm = lseg.merger(sm, lseg.d[l])
l++
if l&-l == l {
break
}
}
return lseg.n
}
func (lseg *LazySegtree) MinLeft(r int, cmp Compare) int {
if r == 0 {
return 0
}
r += lseg.size
for i := lseg.log; i >= 1; i-- {
lseg.Push(r - 1>>uint(i))
}
sm := lseg.e()
for {
r--
for r > 1 && r%2 != 0 {
r >>= 1
}
if !cmp(lseg.merger(lseg.d[r], sm)) {
for r < lseg.size {
lseg.Push(r)
r = 2*r + 1
if cmp(lseg.merger(lseg.d[r], sm)) {
sm = lseg.merger(lseg.d[r], sm)
r--
}
}
return r + 1 - lseg.size
}
sm = lseg.merger(lseg.d[r], sm)
if r&-r == r {
break
}
}
return 0
}
func (lseg *LazySegtree) ceilPow2(n int) int {
x := 0
for (1 << uint(x)) < n {
x++
}
return x
}
/*
セグメント木(2020.05.24作成)
SegtreeInitで初期化
Setで値設定し、Updateで木作成
Getで値を取得
UpdateAtで個別のアイテムを更新
Queryで区間の値を取得
compareで比較方法変更可能
*/
// Data :
// Data型をstructすれば複数データが持てる
// compareも変更すること!
type Data int
// SegmentTree :
type SegmentTree struct {
inf Data
d []Data
offset int
}
// SegtreeInit : nが要素数、valが初期値
func SegtreeInit(n int, val Data) *SegmentTree {
var ret SegmentTree
size := 1
for size < n {
size *= 2
}
ret.d = make([]Data, size*2)
for i := 1; i < size*2; i++ {
ret.d[i] = val
}
ret.offset = size
ret.inf = val
return &ret
}
// Set : 要素に値をセット(※木は更新されない)
func (s *SegmentTree) Set(idx int, val Data) {
s.d[s.offset+idx] = val
}
// Get : 要素に値を取得
func (s *SegmentTree) Get(idx int) Data {
return s.d[s.offset+idx]
}
// Update :
func (s *SegmentTree) Update() {
N := s.offset
off := s.offset
for N > 1 {
for i := off; i < off+N; i += 2 {
p := i / 2
l := i
r := i + 1
s.d[p] = s.compare(s.d[l], s.d[r])
}
off /= 2
N /= 2
}
}
// querySub :
// a, b ... 範囲
func (s *SegmentTree) querySub(a, b, k, l, r int) Data {
if r <= a || b <= l {
return s.inf
}
if a <= l && r <= b {
return s.d[k]
}
return s.compare(
s.querySub(a, b, k*2, l, (l+r)/2),
s.querySub(a, b, k*2+1, (l+r)/2, r))
}
// Query :
// a, b ... 範囲 a <= x < bの範囲で検索
// [a, b)となっているのに注意
func (s *SegmentTree) Query(a, b int) Data {
return s.querySub(a, b, 1, 0, s.offset)
}
// UpdateAt :
func (s *SegmentTree) UpdateAt(n int, val Data) {
pos := s.offset + n
s.d[pos] = val
for pos > 1 {
p := pos / 2
l := p * 2
r := p*2 + 1
s.d[p] = s.compare(s.d[l], s.d[r])
pos /= 2
}
}
// compare :
// 比較関数(ここで比較方法を設定)
// ※min,maxを入れ替えるときなどは、Initの設定注意
func (s *SegmentTree) compare(l, r Data) Data {
// 区間の合計の場合はinitを0にして下記
return l + r
// 区間のminの場合はinfに最大値以上を設定して下記
// if l < r {
// return l
// }
// return r
}
aru aru