結果

問題 No.1254 補強への架け橋
ユーザー yuusanlondonyuusanlondon
提出日時 2020-10-09 22:49:35
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
RE  
実行時間 -
コード長 3,020 bytes
コンパイル時間 92 ms
コンパイル使用メモリ 12,672 KB
実行使用メモリ 52,600 KB
最終ジャッジ日時 2024-07-20 13:17:15
合計ジャッジ時間 34,387 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 31 ms
10,880 KB
testcase_01 AC 31 ms
10,880 KB
testcase_02 AC 30 ms
10,880 KB
testcase_03 AC 31 ms
10,880 KB
testcase_04 AC 31 ms
10,752 KB
testcase_05 AC 31 ms
10,880 KB
testcase_06 AC 31 ms
10,880 KB
testcase_07 AC 30 ms
10,752 KB
testcase_08 AC 30 ms
10,752 KB
testcase_09 AC 31 ms
10,752 KB
testcase_10 AC 30 ms
10,880 KB
testcase_11 AC 31 ms
10,752 KB
testcase_12 AC 31 ms
10,752 KB
testcase_13 AC 31 ms
10,880 KB
testcase_14 AC 31 ms
10,880 KB
testcase_15 AC 31 ms
10,624 KB
testcase_16 AC 31 ms
10,880 KB
testcase_17 AC 31 ms
10,880 KB
testcase_18 AC 31 ms
10,880 KB
testcase_19 AC 31 ms
10,752 KB
testcase_20 AC 31 ms
10,880 KB
testcase_21 AC 30 ms
10,752 KB
testcase_22 AC 30 ms
10,752 KB
testcase_23 AC 31 ms
10,752 KB
testcase_24 AC 31 ms
10,624 KB
testcase_25 AC 32 ms
10,880 KB
testcase_26 AC 31 ms
10,752 KB
testcase_27 AC 31 ms
10,752 KB
testcase_28 AC 30 ms
10,752 KB
testcase_29 AC 30 ms
10,752 KB
testcase_30 AC 30 ms
10,880 KB
testcase_31 AC 31 ms
10,752 KB
testcase_32 AC 31 ms
10,880 KB
testcase_33 AC 31 ms
10,752 KB
testcase_34 AC 31 ms
10,752 KB
testcase_35 AC 31 ms
10,880 KB
testcase_36 AC 31 ms
10,752 KB
testcase_37 AC 31 ms
10,752 KB
testcase_38 AC 31 ms
10,880 KB
testcase_39 AC 32 ms
10,752 KB
testcase_40 AC 31 ms
10,880 KB
testcase_41 AC 32 ms
10,880 KB
testcase_42 AC 30 ms
10,752 KB
testcase_43 AC 37 ms
11,008 KB
testcase_44 AC 34 ms
10,752 KB
testcase_45 AC 33 ms
10,624 KB
testcase_46 AC 35 ms
11,136 KB
testcase_47 AC 33 ms
10,880 KB
testcase_48 AC 35 ms
11,008 KB
testcase_49 AC 31 ms
10,880 KB
testcase_50 AC 37 ms
11,136 KB
testcase_51 AC 36 ms
11,008 KB
testcase_52 AC 37 ms
11,136 KB
testcase_53 AC 36 ms
11,008 KB
testcase_54 AC 37 ms
11,136 KB
testcase_55 AC 36 ms
11,008 KB
testcase_56 AC 32 ms
10,880 KB
testcase_57 AC 35 ms
11,008 KB
testcase_58 AC 35 ms
10,880 KB
testcase_59 AC 31 ms
10,880 KB
testcase_60 AC 32 ms
10,880 KB
testcase_61 AC 36 ms
11,008 KB
testcase_62 AC 32 ms
10,752 KB
testcase_63 AC 94 ms
14,720 KB
testcase_64 AC 47 ms
11,648 KB
testcase_65 AC 72 ms
13,440 KB
testcase_66 AC 61 ms
12,544 KB
testcase_67 AC 43 ms
11,392 KB
testcase_68 AC 67 ms
13,184 KB
testcase_69 AC 77 ms
13,824 KB
testcase_70 AC 50 ms
12,160 KB
testcase_71 AC 46 ms
11,648 KB
testcase_72 AC 80 ms
13,816 KB
testcase_73 AC 49 ms
12,032 KB
testcase_74 AC 74 ms
13,440 KB
testcase_75 AC 64 ms
12,800 KB
testcase_76 AC 38 ms
11,264 KB
testcase_77 AC 59 ms
12,544 KB
testcase_78 AC 86 ms
14,208 KB
testcase_79 AC 90 ms
14,464 KB
testcase_80 AC 82 ms
14,080 KB
testcase_81 AC 89 ms
14,336 KB
testcase_82 AC 85 ms
14,336 KB
testcase_83 AC 866 ms
52,000 KB
testcase_84 AC 832 ms
50,920 KB
testcase_85 AC 489 ms
35,172 KB
testcase_86 AC 675 ms
43,720 KB
testcase_87 AC 738 ms
46,396 KB
testcase_88 AC 123 ms
16,540 KB
testcase_89 AC 835 ms
51,696 KB
testcase_90 AC 515 ms
36,424 KB
testcase_91 AC 395 ms
31,648 KB
testcase_92 AC 211 ms
21,656 KB
testcase_93 AC 635 ms
42,148 KB
testcase_94 AC 577 ms
39,328 KB
testcase_95 AC 578 ms
39,340 KB
testcase_96 AC 764 ms
49,904 KB
testcase_97 AC 336 ms
27,632 KB
testcase_98 AC 774 ms
50,120 KB
testcase_99 AC 449 ms
34,368 KB
testcase_100 AC 864 ms
52,600 KB
testcase_101 AC 188 ms
20,768 KB
testcase_102 AC 111 ms
16,004 KB
testcase_103 AC 206 ms
21,680 KB
testcase_104 AC 285 ms
25,376 KB
testcase_105 AC 642 ms
42,140 KB
testcase_106 AC 369 ms
30,424 KB
testcase_107 AC 826 ms
51,592 KB
testcase_108 AC 845 ms
51,300 KB
testcase_109 AC 639 ms
41,844 KB
testcase_110 AC 567 ms
39,252 KB
testcase_111 AC 615 ms
40,968 KB
testcase_112 AC 270 ms
24,452 KB
testcase_113 AC 579 ms
38,416 KB
testcase_114 AC 352 ms
28,628 KB
testcase_115 AC 135 ms
17,112 KB
testcase_116 AC 420 ms
32,512 KB
testcase_117 AC 272 ms
24,684 KB
testcase_118 AC 758 ms
49,800 KB
testcase_119 AC 459 ms
34,240 KB
testcase_120 AC 732 ms
46,064 KB
testcase_121 AC 226 ms
22,820 KB
testcase_122 AC 404 ms
31,976 KB
testcase_123 AC 31 ms
10,752 KB
testcase_124 RE -
testcase_125 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

# Python program to find bridges in a given undirected graph 
#Complexity : O(V+E) 
   
from collections import defaultdict 
   
#This class represents an undirected graph using adjacency list representation 
class Graph: 
   
    def __init__(self,vertices): 
        self.V= vertices #No. of vertices 
        self.graph = defaultdict(list) # default dictionary to store graph 
        self.Time = 0
   
    # function to add an edge to graph 
    def addEdge(self,u,v,i): 
        self.graph[u].append((v,i)) 
        self.graph[v].append((u,i)) 
   
    '''A recursive function that finds and prints bridges 
    using DFS traversal 
    u --> The vertex to be visited next 
    visited[] --> keeps tract of visited vertices 
    disc[] --> Stores discovery times of visited vertices 
    parent[] --> Stores parent vertices in DFS tree'''
    def bridgeUtil(self,u, visited, parent, low, disc): 
      
        global bridges
        # Mark the current node as visited and print it 
        visited[u]= True
  
        # Initialize discovery time and low value 
        disc[u] = self.Time 
        low[u] = self.Time 
        self.Time += 1
  
        #Recur for all the vertices adjacent to this vertex 
        for (v,i) in self.graph[u]: 
            # If v is not visited yet, then make it a child of u 
            # in DFS tree and recur for it 
            if visited[v] == False : 
                parent[v] = u 
                self.bridgeUtil(v, visited, parent, low, disc) 
  
                # Check if the subtree rooted with v has a connection to 
                # one of the ancestors of u 
                low[u] = min(low[u], low[v]) 
  
  
                ''' If the lowest vertex reachable from subtree 
                under v is below u in DFS tree, then u-v is 
                a bridge'''
                if low[v] > disc[u]: 
                    bridges[i]=1
      
                      
            elif v != parent[u]: # Update low value of u for parent function calls. 
                low[u] = min(low[u], disc[v]) 
  
  
    # DFS based function to find all bridges. It uses recursive 
    # function bridgeUtil() 
    def bridge(self): 
        global bridges
        # Mark all the vertices as not visited and Initialize parent and visited,  
        # and ap(articulation point) arrays 
        visited = [False] * (self.V) 
        disc = [float("Inf")] * (self.V) 
        low = [float("Inf")] * (self.V) 
        parent = [-1] * (self.V) 
  
        # Call the recursive helper function to find bridges 
        # in DFS tree rooted with vertex 'i' 
        for i in range(self.V): 
            if visited[i] == False: 
                self.bridgeUtil(i, visited, parent, low, disc) 
          
n=int(input())
# Create a graph given in the above diagram 
g1 = Graph(n)
bridges=[0]*n
for i in range(n):
  a,b=map(int,input().split())
  g1.addEdge(a-1,b-1, i)
g1.bridge()
ans=[]
for i in range(n):
  if bridges[i]==0:
    ans.append(str(i+1))
print(len(ans))
print(' '.join(ans))
0