結果

問題 No.1254 補強への架け橋
ユーザー yuusanlondonyuusanlondon
提出日時 2020-10-09 22:51:22
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 718 ms / 2,000 ms
コード長 3,052 bytes
コンパイル時間 266 ms
コンパイル使用メモリ 82,304 KB
実行使用メモリ 200,320 KB
最終ジャッジ日時 2024-07-20 13:23:27
合計ジャッジ時間 26,515 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 45 ms
53,376 KB
testcase_01 AC 46 ms
53,632 KB
testcase_02 AC 45 ms
53,504 KB
testcase_03 AC 45 ms
53,888 KB
testcase_04 AC 44 ms
53,760 KB
testcase_05 AC 45 ms
53,760 KB
testcase_06 AC 45 ms
53,376 KB
testcase_07 AC 45 ms
53,760 KB
testcase_08 AC 45 ms
53,632 KB
testcase_09 AC 46 ms
53,632 KB
testcase_10 AC 45 ms
53,632 KB
testcase_11 AC 45 ms
53,760 KB
testcase_12 AC 45 ms
53,760 KB
testcase_13 AC 46 ms
53,888 KB
testcase_14 AC 45 ms
54,144 KB
testcase_15 AC 48 ms
53,888 KB
testcase_16 AC 44 ms
54,016 KB
testcase_17 AC 46 ms
53,632 KB
testcase_18 AC 46 ms
54,016 KB
testcase_19 AC 45 ms
53,632 KB
testcase_20 AC 46 ms
54,272 KB
testcase_21 AC 46 ms
53,760 KB
testcase_22 AC 45 ms
54,144 KB
testcase_23 AC 46 ms
53,888 KB
testcase_24 AC 47 ms
54,272 KB
testcase_25 AC 47 ms
54,144 KB
testcase_26 AC 48 ms
53,760 KB
testcase_27 AC 47 ms
53,888 KB
testcase_28 AC 46 ms
54,016 KB
testcase_29 AC 46 ms
53,888 KB
testcase_30 AC 45 ms
53,632 KB
testcase_31 AC 48 ms
54,144 KB
testcase_32 AC 46 ms
53,760 KB
testcase_33 AC 47 ms
54,144 KB
testcase_34 AC 46 ms
54,016 KB
testcase_35 AC 48 ms
54,400 KB
testcase_36 AC 47 ms
53,760 KB
testcase_37 AC 47 ms
54,144 KB
testcase_38 AC 46 ms
54,400 KB
testcase_39 AC 47 ms
53,888 KB
testcase_40 AC 47 ms
54,272 KB
testcase_41 AC 45 ms
53,760 KB
testcase_42 AC 47 ms
53,760 KB
testcase_43 AC 67 ms
64,768 KB
testcase_44 AC 53 ms
55,808 KB
testcase_45 AC 52 ms
55,808 KB
testcase_46 AC 67 ms
64,768 KB
testcase_47 AC 55 ms
56,704 KB
testcase_48 AC 71 ms
66,560 KB
testcase_49 AC 47 ms
54,400 KB
testcase_50 AC 74 ms
66,944 KB
testcase_51 AC 74 ms
67,072 KB
testcase_52 AC 77 ms
69,248 KB
testcase_53 AC 67 ms
65,280 KB
testcase_54 AC 75 ms
68,736 KB
testcase_55 AC 66 ms
64,128 KB
testcase_56 AC 49 ms
54,656 KB
testcase_57 AC 62 ms
62,720 KB
testcase_58 AC 61 ms
62,208 KB
testcase_59 AC 48 ms
54,656 KB
testcase_60 AC 52 ms
55,168 KB
testcase_61 AC 66 ms
63,872 KB
testcase_62 AC 48 ms
54,528 KB
testcase_63 AC 137 ms
80,256 KB
testcase_64 AC 118 ms
77,568 KB
testcase_65 AC 129 ms
78,080 KB
testcase_66 AC 140 ms
78,848 KB
testcase_67 AC 110 ms
77,568 KB
testcase_68 AC 127 ms
77,440 KB
testcase_69 AC 139 ms
79,104 KB
testcase_70 AC 123 ms
78,208 KB
testcase_71 AC 110 ms
77,312 KB
testcase_72 AC 126 ms
77,568 KB
testcase_73 AC 118 ms
77,440 KB
testcase_74 AC 126 ms
77,568 KB
testcase_75 AC 136 ms
78,080 KB
testcase_76 AC 90 ms
74,368 KB
testcase_77 AC 127 ms
78,336 KB
testcase_78 AC 148 ms
80,000 KB
testcase_79 AC 136 ms
78,976 KB
testcase_80 AC 136 ms
79,232 KB
testcase_81 AC 135 ms
79,232 KB
testcase_82 AC 133 ms
78,720 KB
testcase_83 AC 345 ms
103,680 KB
testcase_84 AC 336 ms
101,120 KB
testcase_85 AC 245 ms
94,336 KB
testcase_86 AC 316 ms
98,048 KB
testcase_87 AC 347 ms
100,608 KB
testcase_88 AC 147 ms
81,280 KB
testcase_89 AC 349 ms
103,168 KB
testcase_90 AC 254 ms
93,056 KB
testcase_91 AC 228 ms
90,880 KB
testcase_92 AC 171 ms
85,632 KB
testcase_93 AC 286 ms
97,280 KB
testcase_94 AC 266 ms
95,360 KB
testcase_95 AC 269 ms
95,744 KB
testcase_96 AC 325 ms
100,736 KB
testcase_97 AC 215 ms
87,808 KB
testcase_98 AC 357 ms
100,992 KB
testcase_99 AC 242 ms
92,800 KB
testcase_100 AC 370 ms
102,912 KB
testcase_101 AC 187 ms
84,736 KB
testcase_102 AC 149 ms
80,384 KB
testcase_103 AC 177 ms
86,272 KB
testcase_104 AC 203 ms
85,760 KB
testcase_105 AC 312 ms
97,536 KB
testcase_106 AC 218 ms
89,216 KB
testcase_107 AC 340 ms
103,168 KB
testcase_108 AC 336 ms
102,528 KB
testcase_109 AC 296 ms
97,024 KB
testcase_110 AC 282 ms
96,000 KB
testcase_111 AC 286 ms
95,616 KB
testcase_112 AC 199 ms
85,760 KB
testcase_113 AC 275 ms
95,744 KB
testcase_114 AC 220 ms
88,320 KB
testcase_115 AC 150 ms
81,792 KB
testcase_116 AC 230 ms
91,008 KB
testcase_117 AC 185 ms
85,376 KB
testcase_118 AC 344 ms
100,864 KB
testcase_119 AC 241 ms
93,056 KB
testcase_120 AC 316 ms
100,992 KB
testcase_121 AC 185 ms
85,888 KB
testcase_122 AC 226 ms
91,008 KB
testcase_123 AC 46 ms
53,632 KB
testcase_124 AC 718 ms
200,320 KB
testcase_125 AC 701 ms
199,936 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

# Python program to find bridges in a given undirected graph 
#Complexity : O(V+E) 
import sys
from collections import defaultdict 
sys.setrecursionlimit(10**6)
#This class represents an undirected graph using adjacency list representation 
class Graph: 
   
    def __init__(self,vertices): 
        self.V= vertices #No. of vertices 
        self.graph = defaultdict(list) # default dictionary to store graph 
        self.Time = 0
   
    # function to add an edge to graph 
    def addEdge(self,u,v,i): 
        self.graph[u].append((v,i)) 
        self.graph[v].append((u,i)) 
   
    '''A recursive function that finds and prints bridges 
    using DFS traversal 
    u --> The vertex to be visited next 
    visited[] --> keeps tract of visited vertices 
    disc[] --> Stores discovery times of visited vertices 
    parent[] --> Stores parent vertices in DFS tree'''
    def bridgeUtil(self,u, visited, parent, low, disc): 
      
        global bridges
        # Mark the current node as visited and print it 
        visited[u]= True
  
        # Initialize discovery time and low value 
        disc[u] = self.Time 
        low[u] = self.Time 
        self.Time += 1
  
        #Recur for all the vertices adjacent to this vertex 
        for (v,i) in self.graph[u]: 
            # If v is not visited yet, then make it a child of u 
            # in DFS tree and recur for it 
            if visited[v] == False : 
                parent[v] = u 
                self.bridgeUtil(v, visited, parent, low, disc) 
  
                # Check if the subtree rooted with v has a connection to 
                # one of the ancestors of u 
                low[u] = min(low[u], low[v]) 
  
  
                ''' If the lowest vertex reachable from subtree 
                under v is below u in DFS tree, then u-v is 
                a bridge'''
                if low[v] > disc[u]: 
                    bridges[i]=1
      
                      
            elif v != parent[u]: # Update low value of u for parent function calls. 
                low[u] = min(low[u], disc[v]) 
  
  
    # DFS based function to find all bridges. It uses recursive 
    # function bridgeUtil() 
    def bridge(self): 
        global bridges
        # Mark all the vertices as not visited and Initialize parent and visited,  
        # and ap(articulation point) arrays 
        visited = [False] * (self.V) 
        disc = [float("Inf")] * (self.V) 
        low = [float("Inf")] * (self.V) 
        parent = [-1] * (self.V) 
  
        # Call the recursive helper function to find bridges 
        # in DFS tree rooted with vertex 'i' 
        for i in range(self.V): 
            if visited[i] == False: 
                self.bridgeUtil(i, visited, parent, low, disc) 
          
n=int(input())
# Create a graph given in the above diagram 
g1 = Graph(n)
bridges=[0]*n
for i in range(n):
  a,b=map(int,input().split())
  g1.addEdge(a-1,b-1, i)
g1.bridge()
ans=[]
for i in range(n):
  if bridges[i]==0:
    ans.append(str(i+1))
print(len(ans))
print(' '.join(ans))
0