結果
問題 | No.1253 雀見椪 |
ユーザー | keijak |
提出日時 | 2020-10-09 22:57:07 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 39 ms / 2,000 ms |
コード長 | 5,965 bytes |
コンパイル時間 | 2,209 ms |
コンパイル使用メモリ | 205,948 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-20 13:36:16 |
合計ジャッジ時間 | 2,942 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 4 ms
6,940 KB |
testcase_04 | AC | 34 ms
6,944 KB |
testcase_05 | AC | 35 ms
6,940 KB |
testcase_06 | AC | 35 ms
6,940 KB |
testcase_07 | AC | 34 ms
6,940 KB |
testcase_08 | AC | 35 ms
6,940 KB |
testcase_09 | AC | 35 ms
6,940 KB |
testcase_10 | AC | 37 ms
6,944 KB |
testcase_11 | AC | 39 ms
6,944 KB |
testcase_12 | AC | 34 ms
6,940 KB |
testcase_13 | AC | 34 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,944 KB |
ソースコード
#include <bits/stdc++.h> using i64 = long long; using u64 = unsigned long long; #define REP(i, n) for (int i = 0, REP_N_ = int(n); i < REP_N_; ++i) #define ALL(x) std::begin(x), std::end(x) #define SIZE(a) (int)((a).size()) template <class T> inline bool chmax(T &a, T b) { return a < b and ((a = std::move(b)), true); } template <class T> inline bool chmin(T &a, T b) { return a > b and ((a = std::move(b)), true); } template <typename T> using V = std::vector<T>; template <typename T> std::istream &operator>>(std::istream &is, std::vector<T> &a) { for (auto &x : a) is >> x; return is; } template <typename Container> std::ostream &pprint(const Container &a, std::string_view sep = " ", std::string_view ends = "\n", std::ostream *os = nullptr) { if (os == nullptr) os = &std::cout; auto b = std::begin(a), e = std::end(a); for (auto it = std::begin(a); it != e; ++it) { if (it != b) *os << sep; *os << *it; } return *os << ends; } template <typename T, typename = void> struct is_iterable : std::false_type {}; template <typename T> struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())), decltype(std::end(std::declval<T>()))>> : std::true_type {}; template <typename T, typename = std::enable_if_t<is_iterable<T>::value && !std::is_same<T, std::string>::value>> std::ostream &operator<<(std::ostream &os, const T &a) { return pprint(a, ", ", "", &(os << "{")) << "}"; } template <typename T, typename U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &a) { return os << "(" << a.first << ", " << a.second << ")"; } #ifdef ENABLE_DEBUG template <typename T> void pdebug(const T &value) { std::cerr << value; } template <typename T, typename... Ts> void pdebug(const T &value, const Ts &... args) { pdebug(value); std::cerr << ", "; pdebug(args...); } #define DEBUG(...) \ do { \ std::cerr << " \033[33m (L" << __LINE__ << ") "; \ std::cerr << #__VA_ARGS__ << ":\033[0m "; \ pdebug(__VA_ARGS__); \ std::cerr << std::endl; \ } while (0) #else #define pdebug(...) #define DEBUG(...) #endif template <u64 M> struct ModInt { constexpr ModInt(long long val = 0) : _v(0) { if (val < 0) { long long k = (abs(val) + M - 1) / M; val += k * M; } assert(val >= 0); _v = val % M; } static constexpr int mod() { return M; } static constexpr u64 umod() { return M; } inline u64 val() const { return _v; } ModInt &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } ModInt &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } ModInt operator++(int) { auto result = *this; ++*this; return result; } ModInt operator--(int) { auto result = *this; --*this; return result; } constexpr ModInt operator-() const { return ModInt(-_v); } constexpr ModInt &operator+=(const ModInt &a) { if ((_v += a._v) >= M) _v -= M; return *this; } constexpr ModInt &operator-=(const ModInt &a) { if ((_v += M - a._v) >= M) _v -= M; return *this; } constexpr ModInt &operator*=(const ModInt &a) { _v = ((unsigned long long)(_v)*a._v) % M; return *this; } constexpr ModInt pow(unsigned long long t) const { ModInt base = *this; ModInt res = 1; while (t) { if (t & 1) res *= base; base *= base; t >>= 1; } return res; } constexpr ModInt inv() const { // Inverse by Extended Euclidean algorithm. // M doesn't need to be prime, but x and M must be coprime. assert(_v != 0); // auto [g, x, y] = ext_gcd(_v, M); // assert(g == 1LL); // The GCD must be 1. // return x; // Inverse by Fermat's little theorem. // M must be prime. It's often faster. // return pow(M - 2); } constexpr ModInt &operator/=(const ModInt &a) { return *this *= a.inv(); } friend constexpr ModInt operator+(const ModInt &a, const ModInt &b) { return ModInt(a) += b; } friend constexpr ModInt operator-(const ModInt &a, const ModInt &b) { return ModInt(a) -= b; } friend constexpr ModInt operator*(const ModInt &a, const ModInt &b) { return ModInt(a) *= b; } friend constexpr ModInt operator/(const ModInt &a, const ModInt &b) { return ModInt(a) /= b; } friend constexpr bool operator==(const ModInt &a, const ModInt &b) { return a._v == b._v; } friend constexpr bool operator!=(const ModInt &a, const ModInt &b) { return a._v != b._v; } friend std::istream &operator>>(std::istream &is, ModInt &a) { return is >> a._v; } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a._v; } private: // Extended Euclidean algorithm // Returns (gcd(a,b), x, y) where `a*x + b*y == gcd(a,b)`. static std::tuple<int, int, int> ext_gcd(int a, int b) { int ax = 1, ay = 0, bx = 0, by = 1; for (;;) { if (b == 0) break; auto d = std::div(a, b); a = b; b = d.rem; ax -= bx * d.quot; std::swap(ax, bx); ay -= by * d.quot; std::swap(ay, by); } return {a, ax, ay}; } u64 _v; // raw value }; const u64 MOD = 1'000'000'007; using Mint = ModInt<MOD>; using namespace std; void solve() { u64 n; Mint ag, bg, ac, bc, ap, bp; cin >> n >> ag >> bg >> ac >> bc >> ap >> bp; Mint allg = (ag / bg).pow(n), allc = (ac / bc).pow(n), allp = (ap / bp).pow(n); Mint ans = 0; ans += ((bp - ap) / bp).pow(n); ans += ((bg - ag) / bg).pow(n); ans += ((bc - ac) / bc).pow(n); ans -= 2 * allg + 2 * allc + 2 * allp; ans = 1 - ans; cout << ans << '\n'; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int T; cin >> T; REP(i, T) { solve(); } }