結果
| 問題 |
No.1253 雀見椪
|
| コンテスト | |
| ユーザー |
kenta255
|
| 提出日時 | 2020-10-10 09:36:03 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 170 ms / 2,000 ms |
| コード長 | 3,244 bytes |
| コンパイル時間 | 2,179 ms |
| コンパイル使用メモリ | 202,536 KB |
| 最終ジャッジ日時 | 2025-01-15 06:13:45 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 14 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define P pair<ll,ll>
#define FOR(I,A,B) for(ll I = ll(A); I < ll(B); ++I)
#define FORR(I,A,B) for(ll I = ll((B)-1); I >= ll(A); --I)
#define TO(x,t,f) ((x)?(t):(f))
#define SORT(x) (sort(x.begin(),x.end())) // 0 2 2 3 4 5 8 9
#define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin()) //xi>=v x is sorted
#define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin()) //xi>v x is sorted
#define NUM(x,v) (POSU(x,v)-POSL(x,v)) //x is sorted
#define REV(x) (reverse(x.begin(),x.end())) //reverse
ll gcd_(ll a,ll b){if(a%b==0)return b;return gcd_(b,a%b);}
ll lcm_(ll a,ll b){ll c=gcd_(a,b);return ((a/c)*b);}
#define NEXTP(x) next_permutation(x.begin(),x.end())
const ll INF=ll(1e16)+ll(7);
const ll MOD=1000000007LL;
#define out(a) cout<<fixed<<setprecision((a))
//tie(a,b,c) = make_tuple(10,9,87);
#define pop_(a) __builtin_popcount((a))
ll keta(ll a){ll r=0;while(a){a/=10;r++;}return r;}
class comb{
vector<ll> f,fr;
ll MOD_;
public:
//a^(p-1) = 1 (mod p)(p->Prime numbers)
//a^(p-2) = a^(-1)
ll calc(ll a,ll b,ll p){//a^(b) mod p
if(b==0)return 1;
ll y = calc(a,b/2,p);y=(y*y)%p;
if(b & 1) y = (y * a) % p;
return y;
}
void init(ll n,ll mod){//input max_n
MOD_ = mod;
f.resize(n+1);
fr.resize(n+1);
f[0]=fr[0]=1;
for(ll i=1;i<n+1;i++){
f[i] = (f[i-1] * i) % mod;
}
fr[n] = calc(f[n],mod-2,mod);
for(ll i=n-1;i>=0;i--){
fr[i] = fr[i+1] * (i+1) % mod;
}
}
ll nCr(ll n,ll r){
if(n<0||r<0||n<r)return 0;
return f[n] * fr[r] % MOD_ * fr[n-r] % MOD_;
}//nHr = n+r-1Cr
};
class modll{
public:
ll v,m;
modll(ll v=0,ll m=MOD):v(v),m(m){}
modll operator + (modll p) {return modll( ( v + p.v ) % m , m );}
modll operator - (modll p) {return modll( ( v + p.m - p.v ) % p.m , m );}
modll operator * (modll a) {return modll(v * a.v % a.m, a.m);}
modll operator / (modll a) {return modll(v * calcm(a.v,a.m-2,a.m) % a.m , m );}
modll operator ^ (modll a) {return modll(calcm(v,a.v,a.m),a.m);}
modll operator + (ll p) {return modll( ( v + p ) % m , m );}
modll operator - (ll p) {return modll( ( v + m - p ) % m , m );}
modll operator * (ll p) {return modll( ( v * p ) % m , m );}
modll operator / (ll a) {return modll(v*calcm(a,m-2,m)%m,m);}
modll operator ^ (ll a) {return modll(calcm(v,a,m),m);}
ll calcm(ll a,ll b,ll p){//a^(b) mod p
if(b==0)return 1;
ll y = calcm(a,b/2,p);y=(y*y)%p;
if(b & 1) y = (y * a) % p;
return y;
}
};
ll calc(ll a,ll b,ll p){//a^(b) mod p
if(b==0)return 1;
ll y = calc(a,b/2,p);y=(y*y)%p;
if(b & 1) y = (y * a) % p;
return y;
}
modll mpow(modll a,modll b){
return modll(calc(a.v,b.v,a.m),a.m);
}
int main(){
ll T;
cin >> T;
FOR(t,0,T){
modll N;
vector<modll> A(3),B(3);
cin >> N.v;
N.m = MOD;
FOR(i,0,3) cin >> A[i].v >> B[i].v;
FOR(i,0,3) A[i].m = B[i].m = MOD;
modll only0 = (A[0] / B[0]) ^ N;
modll only1 = (A[1] / B[1]) ^ N;
modll only2 = (A[2] / B[2]) ^ N;
modll not0 = (modll(1,MOD) - (A[0] / B[0])) ^ N;
modll not1 = (modll(1,MOD) - (A[1] / B[1])) ^ N;
modll not2 = (modll(1,MOD) - (A[2] / B[2])) ^ N;
modll ans = not0+not1+not2-only1-only1-only0-only0-only2-only2;;
ans = modll(1,MOD) - ans;
cout << ans.v << endl;
}
}
kenta255