結果

問題 No.1080 Strange Squared Score Sum
ユーザー chaemonchaemon
提出日時 2020-10-17 01:43:05
言語 Nim
(2.2.0)
結果
AC  
実行時間 662 ms / 5,000 ms
コード長 35,109 bytes
コンパイル時間 4,173 ms
コンパイル使用メモリ 102,016 KB
実行使用メモリ 24,064 KB
最終ジャッジ日時 2024-07-21 01:39:39
合計ジャッジ時間 13,069 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 321 ms
12,800 KB
testcase_03 AC 626 ms
21,632 KB
testcase_04 AC 151 ms
8,064 KB
testcase_05 AC 165 ms
8,704 KB
testcase_06 AC 34 ms
5,376 KB
testcase_07 AC 74 ms
5,504 KB
testcase_08 AC 319 ms
13,312 KB
testcase_09 AC 299 ms
12,544 KB
testcase_10 AC 35 ms
5,376 KB
testcase_11 AC 609 ms
21,120 KB
testcase_12 AC 292 ms
12,800 KB
testcase_13 AC 617 ms
23,168 KB
testcase_14 AC 306 ms
12,544 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 662 ms
24,064 KB
testcase_17 AC 342 ms
12,672 KB
testcase_18 AC 338 ms
12,288 KB
testcase_19 AC 341 ms
12,416 KB
testcase_20 AC 610 ms
20,992 KB
testcase_21 AC 606 ms
20,992 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
/home/judge/data/code/Main.nim(13, 22) Warning: imported and not used: 'streams_lib' [UnusedImport]

ソースコード

diff #

# verify-helper: PROBLEM https://yukicoder.me/problems/no/1080

when not declared ATCODER_HEADER_HPP:
  const ATCODER_HEADER_HPP* = 1
  {.hints:off checks:off assertions:on checks:off optimization:speed.}
  import std/algorithm as algorithm_lib
  import std/sequtils as sequils_lib
  import std/tables as tables_lib
  import std/macros as macros_lib
  import std/math as math_lib
  import std/sets as sets_lib
  import std/strutils as strutils_lib
  import std/streams as streams_lib
  import std/strformat as strformat_lib
  import std/sugar as sugar_lib
  
  proc scanf*(formatstr: cstring){.header: "<stdio.h>", varargs.}
  proc getchar*(): char {.header: "<stdio.h>", varargs.}
  proc nextInt*(base:int = 0): int =
    scanf("%lld",addr result)
    result -= base
  proc nextFloat*(): float = scanf("%lf",addr result)
  proc nextString*(): string =
    var get = false;result = ""
    while true:
      var c = getchar()
      if int(c) > int(' '): get = true;result.add(c)
      elif get: break
  template `max=`*(x,y:typed):void = x = max(x,y)
  template `min=`*(x,y:typed):void = x = min(x,y)
  template inf*(T): untyped = 
    when T is SomeFloat: T(Inf)
    elif T is SomeInteger: ((T(1) shl T(sizeof(T)*8-2)) - (T(1) shl T(sizeof(T)*4-1)))
    else: assert(false)
# modSqrt {{{
when not declared ATCODER_MODSQRT_HPP:
  const ATCODER_MODSQRT_HPP* = 1
  when not declared ATCODER_MODINT_HPP:
    const ATCODER_MODINT_HPP* = 1
  
    type
      StaticModInt*[M: static[int]] = distinct uint32
      DynamicModInt*[T: static[int]] = distinct uint32
  
    type ModInt* = StaticModInt or DynamicModInt
  
    proc isStaticModInt*(T:typedesc):bool = T is StaticModInt
    proc isDynamicModInt*(T:typedesc):bool = T is DynamicModInt
    proc isModInt*(T:typedesc):bool = T.isStaticModInt or T.isDynamicModInt
    proc isStatic*(T:typedesc[ModInt]):bool = T is StaticModInt
  
    when not declared ATCODER_INTERNAL_MATH_HPP:
      const ATCODER_INTERNAL_MATH_HPP* = 1
      import std/math
    
      # Fast moduler by barrett reduction
      # Reference: https:#en.wikipedia.org/wiki/Barrett_reduction
      # NOTE: reconsider after Ice Lake
      type Barrett* = object
        m*, im:uint
    
      # @param m `1 <= m`
      proc initBarrett*(m:uint):auto = Barrett(m:m, im:(0'u - 1'u) div m + 1)
    
      # @return m
      proc umod*(self: Barrett):uint =
        self.m
    
      {.emit: """
    inline unsigned long long calc_mul(const unsigned long long &a, const unsigned long long &b){
      return (unsigned long long)(((unsigned __int128)(a)*b) >> 64);
    }
    """.}
      proc calc_mul*(a,b:culonglong):culonglong {.importcpp: "calc_mul(#,#)", nodecl.}
      # @param a `0 <= a < m`
      # @param b `0 <= b < m`
      # @return `a * b % m`
      proc mul*(self: Barrett, a:uint, b:uint):uint =
        # [1] m = 1
        # a = b = im = 0, so okay
    
        # [2] m >= 2
        # im = ceil(2^64 / m)
        # -> im * m = 2^64 + r (0 <= r < m)
        # let z = a*b = c*m + d (0 <= c, d < m)
        # a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        # c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        # ((ab * im) >> 64) == c or c + 1
        let z = a * b
        #  #ifdef _MSC_VER
        #      unsigned long long x;
        #      _umul128(z, im, &x);
        #  #else
        ##TODO
        #      unsigned long long x =
        #        (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
        #  #endif
        let x = calc_mul(z.culonglong, self.im.culonglong).uint
        var v = z - x * self.m
        if self.m <= v: v += self.m
        return v
    
      # @param n `0 <= n`
      # @param m `1 <= m`
      # @return `(x ** n) % m`
      proc pow_mod_constexpr*(x,n,m:int):int =
        if m == 1: return 0
        var
          r = 1
          y = floorMod(x, m)
          n = n
        while n != 0:
          if (n and 1) != 0: r = (r * y) mod m
          y = (y * y) mod m
          n = n shr 1
        return r.int
      
      # Reference:
      # M. Forisek and J. Jancina,
      # Fast Primality Testing for Integers That Fit into a Machine Word
      # @param n `0 <= n`
      proc is_prime_constexpr*(n:int):bool =
        if n <= 1: return false
        if n == 2 or n == 7 or n == 61: return true
        if n mod 2 == 0: return false
        var d = n - 1
        while d mod 2 == 0: d = d div 2
        for a in [2, 7, 61]:
          var
            t = d
            y = pow_mod_constexpr(a, t, n)
          while t != n - 1 and y != 1 and y != n - 1:
            y = y * y mod n
            t =  t shl 1
          if y != n - 1 and t mod 2 == 0:
            return false
        return true
      proc is_prime*[n:static[int]]():bool = is_prime_constexpr(n)
    #  
    #  # @param b `1 <= b`
    #  # @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
      proc inv_gcd*(a, b:int):(int,int) =
        var a = floorMod(a, b)
        if a == 0: return (b, 0)
      
        # Contracts:
        # [1] s - m0 * a = 0 (mod b)
        # [2] t - m1 * a = 0 (mod b)
        # [3] s * |m1| + t * |m0| <= b
        var
          s = b
          t = a
          m0 = 0
          m1 = 1
      
        while t != 0:
          var u = s div t
          s -= t * u;
          m0 -= m1 * u;  # |m1 * u| <= |m1| * s <= b
      
          # [3]:
          # (s - t * u) * |m1| + t * |m0 - m1 * u|
          # <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
          # = s * |m1| + t * |m0| <= b
      
          var tmp = s
          s = t;t = tmp;
          tmp = m0;m0 = m1;m1 = tmp;
        # by [3]: |m0| <= b/g
        # by g != b: |m0| < b/g
        if m0 < 0: m0 += b div s
        return (s, m0)
    
      # Compile time primitive root
      # @param m must be prime
      # @return primitive root (and minimum in now)
      proc primitive_root_constexpr*(m:int):int =
        if m == 2: return 1
        if m == 167772161: return 3
        if m == 469762049: return 3
        if m == 754974721: return 11
        if m == 998244353: return 3
        var divs:array[20, int]
        divs[0] = 2
        var cnt = 1
        var x = (m - 1) div 2
        while x mod 2 == 0: x = x div 2
        var i = 3
        while i * i <= x:
          if x mod i == 0:
            divs[cnt] = i
            cnt.inc
            while x mod i == 0:
              x = x div i
          i += 2
        if x > 1:
          divs[cnt] = x
          cnt.inc
        var g = 2
        while true:
          var ok = true
          for i in 0..<cnt:
            if pow_mod_constexpr(g, (m - 1) div divs[i], m) == 1:
              ok = false
              break
          if ok: return g
          g.inc
      proc primitive_root*[m:static[int]]():auto =
        primitive_root_constexpr(m)
      discard
  
    proc getBarrett*[T:static[int]](t:typedesc[DynamicModInt[T]], set = false, M:SomeInteger = 0.uint32):ptr Barrett =
      var Barrett_of_DynamicModInt {.global.} = initBarrett(998244353.uint)
      return Barrett_of_DynamicModInt.addr
    proc getMod*[T:static[int]](t:typedesc[DynamicModInt[T]]):uint32 {.inline.} =
      (t.getBarrett)[].m.uint32
    proc setMod*[T:static[int]](t:typedesc[DynamicModInt[T]], M:SomeInteger){.used inline.} =
      (t.getBarrett)[] = initBarrett(M.uint)
  
    proc `$`*(m: ModInt): string {.inline.} =
      $m.int
  
    template umod*[T:ModInt](self: typedesc[T]):uint32 =
      when T is StaticModInt:
        T.M
      elif T is DynamicModInt:
        T.getMod()
      else:
        static: assert false
    template umod*[T:ModInt](self: T):uint32 = self.type.umod
  
    proc `mod`*[T:ModInt](self:typedesc[T]):int = T.umod.int
    proc `mod`*[T:ModInt](self:T):int = self.umod.int
  
    proc init*[T:ModInt](t:typedesc[T], v: SomeInteger or T): auto {.inline.} =
      when v is T: return v
      else:
        when v is SomeUnsignedInt:
          if v.uint < T.umod:
            return T(v.uint32)
          else:
            return T((v.uint mod T.umod.uint).uint32)
        else:
          var v = v.int
          if 0 <= v:
            if v < T.mod: return T(v.uint32)
            else: return T((v mod T.mod).uint32)
          else:
            v = v mod T.mod
            if v < 0: v += T.mod
            return T(v.uint32)
    template initModInt*(v: SomeInteger or ModInt; M: static[int] = 1_000_000_007): auto =
      StaticModInt[M].init(v)
  
  # TODO
  #  converter toModInt[M:static[int]](n:SomeInteger):StaticModInt[M] {.inline.} = initModInt(n, M)
  
  #  proc initModIntRaw*(v: SomeInteger; M: static[int] = 1_000_000_007): auto {.inline.} =
  #    ModInt[M](v.uint32)
    proc raw*[T:ModInt](t:typedesc[T], v:SomeInteger):auto = T(v)
  
    proc inv*[T:ModInt](v:T):T {.inline.} =
      var
        a = v.int
        b = T.mod
        u = 1
        v = 0
      while b > 0:
        let t = a div b
        a -= t * b;swap(a, b)
        u -= t * v;swap(u, v)
      return T.init(u)
  
    proc val*(m: ModInt): int {.inline.} =
      int(m)
  
    proc `-`*[T:ModInt](m: T): T {.inline.} =
      if int(m) == 0: return m
      else: return T(m.umod() - uint32(m))
  
    template generateDefinitions(name, l, r, body: untyped): untyped {.dirty.} =
      proc name*[T:ModInt](l: T; r: T): auto {.inline.} =
        body
      proc name*[T:ModInt](l: SomeInteger; r: T): auto {.inline.} =
        body
      proc name*[T:ModInt](l: T; r: SomeInteger): auto {.inline.} =
        body
  
    proc `+=`*[T:ModInt](m: var T; n: SomeInteger | T) {.inline.} =
      uint32(m) += T.init(n).uint32
      if uint32(m) >= T.umod: uint32(m) -= T.umod
  
    proc `-=`*[T:ModInt](m: var T; n: SomeInteger | T) {.inline.} =
      uint32(m) -= T.init(n).uint32
      if uint32(m) >= T.umod: uint32(m) += T.umod
  
    proc `*=`*[T:ModInt](m: var T; n: SomeInteger | T) {.inline.} =
      when T is StaticModInt:
        uint32(m) = (uint(m) * T.init(n).uint mod T.umod).uint32
      elif T is DynamicModInt:
        uint32(m) = T.getBarrett[].mul(uint(m), T.init(n).uint).uint32
      else:
        static: assert false
  
    proc `/=`*[T:ModInt](m: var T; n: SomeInteger | T) {.inline.} =
      uint32(m) = (uint(m) * T.init(n).inv().uint mod T.umod).uint32
  
  #  proc `==`*[T:ModInt](m: T; n: SomeInteger | T): bool {.inline.} =
  #    int(m) == T.init(n).int
  
    generateDefinitions(`+`, m, n):
      result = T.init(m)
      result += n
  
    generateDefinitions(`-`, m, n):
      result = T.init(m)
      result -= n
  
    generateDefinitions(`*`, m, n):
      result = T.init(m)
      result *= n
  
    generateDefinitions(`/`, m, n):
      result = T.init(m)
      result /= n
  
    generateDefinitions(`==`, m, n):
      result = (T.init(m).int == T.init(n).int)
  
    proc inc*[T:ModInt](m: var T) {.inline.} =
      uint32(m).inc
      if m == T.umod:
        uint32(m) = 0
  
    proc dec*[T:ModInt](m: var T) {.inline.} =
      if m == 0:
        uint32(m) = T.umod - 1
      else:
        uint32(m).dec
  
    proc pow*[T:ModInt](m: T; p: SomeInteger): T {.inline.} =
      assert 0 <= p
      var
        p = p.int
        m = m
      uint32(result) = 1
      while p > 0:
        if (p and 1) == 1:
          result *= m
        m *= m
        p = p shr 1
    proc `^`*[T:ModInt](m: T; p: SomeInteger): T {.inline.} = m.pow(p)
  
    type modint998244353* = StaticModInt[998244353]
    type modint1000000007* = StaticModInt[1000000007]
    type modint* = DynamicModInt[-1]
    discard
  import std/options
  
  proc modSqrt*[T:ModInt](a:T):Option[T] =
    let p = a.umod.int
    if a == 0: return T(0).some
    if p == 2: return T(a).some
    if a.pow((p - 1) shr 1) != 1: return none(T)
    var b = T(1)
    while b.pow((p - 1) shr 1) == 1: b += 1
    var
      e = 0
      m = p - 1
    while m mod 2 == 0: m = m shr 1; e.inc
    var
      x = a.pow((m - 1) shr 1)
      y = a * x * x
    x *= a
    var z = b.pow(m)
    while y != 1:
      var
        j = 0
        t = y
      while t != 1:
        j.inc
        t *= t
      z = z.pow(1 shl (e - j - 1))
      x *= z
      z *= z
      y *= z
      e = j
    return T(x).some
#}}}
when not declared ATCODER_NTT_HPP:
  const ATCODER_NTT_HPP* = 1
  when not declared ATCODER_ELEMENT_CONCEPTS_HPP:
    const ATCODER_ELEMENT_CONCEPTS_HPP* = 1
    proc inv*[T:SomeFloat](a:T):auto = T(1) / a
    proc init*(self:typedesc[SomeFloat], a:SomeNumber):auto = self(a)
    type AdditiveGroupElem* = concept x, type T
      x + x
      x - x
      -x
      T(0)
    type MultiplicativeGroupElem* = concept x, type T
      x * x
      x / x
  #    x.inv()
      T(1)
    type RingElem* = concept x, type T
      x + x
      x - x
      -x
      x * x
      T(0)
      T(1)
    type FieldElem* = concept x, type T
      x + x
      x - x
      x * x
      x / x
      -x
  #    x.inv()
      T(0)
      T(1)
    type FiniteFieldElem* = concept x, type T
      x is FieldElem
      T.mod()
      T.mod() is int
      x.pow(1000000)
    type hasInf* = concept x, type T
      T(Inf)
    discard
  when not declared ATCODER_PARTICULAR_MOD_CONVOLUTION:
    const ATCODER_PARTICULAR_MOD_CONVOLUTION* = 1
    when not declared ATCODER_CONVOLUTION_HPP:
      const ATCODER_CONVOLUTION_HPP* = 1
    
      import std/math
      import std/sequtils
      import std/sugar
      when not declared ATCODER_INTERNAL_BITOP_HPP:
        const ATCODER_INTERNAL_BITOP_HPP* = 1
        import std/bitops
      
      #ifdef _MSC_VER
      #include <intrin.h>
      #endif
      
      # @param n `0 <= n`
      # @return minimum non-negative `x` s.t. `n <= 2**x`
        proc ceil_pow2*(n:SomeInteger):int =
          var x = 0
          while (1.uint shl x) < n.uint: x.inc
          return x
      # @param n `1 <= n`
      # @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
        proc bsf*(n:SomeInteger):int =
          return countTrailingZeroBits(n)
        discard
    
    #  template <class mint, internal::is_static_modint_t<mint>* = nullptr>
      proc butterfly*[mint:FiniteFieldElem](a:var seq[mint]) =
        const g = primitive_root[mint.mod]()
        let
          n = a.len
          h = ceil_pow2(n)
        
        var 
          first {.global.} = true
          sum_e {.global.} :array[30, mint]   # sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
        if first:
          first = false
          var es, ies:array[30, mint] # es[i]^(2^(2+i)) == 1
          let cnt2 = bsf(mint.mod - 1)
          mixin inv
          var
            e = mint(g).pow((mint.mod - 1) shr cnt2)
            ie = e.inv()
          for i in countdown(cnt2, 2):
            # e^(2^i) == 1
            es[i - 2] = e
            ies[i - 2] = ie
            e *= e
            ie *= ie
          var now = mint(1)
          for i in 0..cnt2 - 2:
            sum_e[i] = es[i] * now
            now *= ies[i]
        for ph in 1..h:
          let
            w = 1 shl (ph - 1)
            p = 1 shl (h - ph)
          var now = mint(1)
          for s in 0..<w:
            let offset = s shl (h - ph + 1)
            for i in 0..<p:
              let
                l = a[i + offset]
                r = a[i + offset + p] * now
              a[i + offset] = l + r
              a[i + offset + p] = l - r
            now *= sum_e[bsf(not s)]
      
      proc butterfly_inv*[mint:FiniteFieldElem](a:var seq[mint]) =
        const g = primitive_root[mint.mod]()
        let
          n = a.len
          h = ceil_pow2(n)
        var
          first{.global.} = true
          sum_ie{.global.}:array[30, mint]  # sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
        if first:
          first = false
          var es, ies: array[30, mint] # es[i]^(2^(2+i)) == 1
          let cnt2 = bsf(mint.mod - 1)
          mixin inv
          var
            e = mint(g).pow((mint.mod - 1) shr cnt2)
            ie = e.inv()
          for i in countdown(cnt2, 2):
            # e^(2^i) == 1
            es[i - 2] = e
            ies[i - 2] = ie
            e *= e
            ie *= ie
          var now = mint(1)
          for i in 0..cnt2 - 2:
            sum_ie[i] = ies[i] * now
            now *= es[i]
        mixin init
        for ph in countdown(h, 1):
          let
            w = 1 shl (ph - 1)
            p = 1 shl (h - ph)
          var inow = mint(1)
          for s in 0..<w:
            let offset = s shl (h - ph + 1)
            for i in 0..<p:
              let
                l = a[i + offset]
                r = a[i + offset + p]
              a[i + offset] = l + r
              a[i + offset + p] = mint.init((mint.mod + l.val - r.val) * inow.val)
            inow *= sum_ie[bsf(not s)]
    
    #  template <class mint, internal::is_static_modint_t<mint>* = nullptr>
      proc convolution*[mint:FiniteFieldElem](a, b:seq[mint]):seq[mint] =
        var
          n = a.len
          m = b.len
        mixin inv
        if n == 0 or m == 0: return newSeq[mint]()
        var (a, b) = (a, b)
        if min(n, m) <= 60:
          if n < m:
            swap(n, m)
            swap(a, b)
          var ans = newSeq[mint](n + m - 1)
          for i in 0..<n:
            for j in 0..<m:
              ans[i + j] += a[i] * b[j]
          return ans
        let z = 1 shl ceil_pow2(n + m - 1)
        a.setlen(z)
        butterfly(a)
        b.setlen(z)
        butterfly(b)
        for i in 0..<z:
          a[i] *= b[i]
        butterfly_inv(a)
        a.setlen(n + m - 1)
        let iz = mint(z).inv()
        for i in 0..<n+m-1: a[i] *= iz
        return a
    
    
    #  template <unsigned int mod = 998244353,
    #      class T,
    #      std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
      proc convolution*[T:SomeInteger](a, b:seq[T], M:static[uint] = 998244353):seq[T] =
        let (n, m) = (a.len, b.len)
        if n == 0 or m == 0: return newSeq[T]()
      
        type mint = StaticModInt[M.int]
        static:
          assert mint is FiniteFieldElem
        return convolution(
          a.map((x:T) => mint.init(x)), 
          b.map((x:T) => mint.init(x))
        ).map((x:mint) => T(x.val()))
    
      proc convolution_ll*(a, b:seq[int]):seq[int] =
        let (n, m) = (a.len, b.len)
        if n == 0 or m == 0: return newSeq[int]()
        const
          MOD1:uint = 754974721  # 2^24
          MOD2:uint = 167772161  # 2^25
          MOD3:uint = 469762049  # 2^26
          M2M3 = MOD2 * MOD3
          M1M3 = MOD1 * MOD3
          M1M2 = MOD1 * MOD2
          M1M2M3 = MOD1 * MOD2 * MOD3
    
          i1 = inv_gcd((MOD2 * MOD3).int, MOD1.int)[1].uint
          i2 = inv_gcd((MOD1 * MOD3).int, MOD2.int)[1].uint
          i3 = inv_gcd((MOD1 * MOD2).int, MOD3.int)[1].uint
        
        let
          c1 = convolution(a, b, MOD1)
          c2 = convolution(a, b, MOD2)
          c3 = convolution(a, b, MOD3)
      
        var c = newSeq[int](n + m - 1)
        for i in 0..<n + m - 1:
          var x = 0.uint
          x += (c1[i].uint * i1) mod MOD1 * M2M3
          x += (c2[i].uint * i2) mod MOD2 * M1M3
          x += (c3[i].uint * i3) mod MOD3 * M1M2
          # B = 2^63, -B <= x, r(real value) < B
          # (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
          # r = c1[i] (mod MOD1)
          # focus on MOD1
          # r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
          # r = x,
          #   x - M' + (0 or 2B),
          #   x - 2M' + (0, 2B or 4B),
          #   x - 3M' + (0, 2B, 4B or 6B) (without mod!)
          # (r - x) = 0, (0)
          #       - M' + (0 or 2B), (1)
          #       -2M' + (0 or 2B or 4B), (2)
          #       -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
          # we checked that
          #   ((1) mod MOD1) mod 5 = 2
          #   ((2) mod MOD1) mod 5 = 3
          #   ((3) mod MOD1) mod 5 = 4
          var diff = c1[i] - floorMod(x.int, MOD1.int)
          if diff < 0: diff += MOD1.int
          const offset = [0'u, 0'u, M1M2M3, 2'u * M1M2M3, 3'u * M1M2M3]
          x -= offset[diff mod 5]
          c[i] = x.int
        return c
      discard
    import std/sequtils
    type ParticularModConvolution* = object
      discard
    type ParticularModFFTType[T:StaticModInt] = seq[T]
    proc fft*[T:StaticModInt](t:typedesc[ParticularModConvolution], a:seq[T]):ParticularModFFTType[T] {.inline.} =
      result = a
      butterfly(result)
    proc inplace_partial_dot*[T](t:typedesc[ParticularModConvolution], a:var ParticularModFFTType[T], b:ParticularModFFTType[T], p:Slice[int]) =
      for i in p:
        a[i] *= b[i]
    proc dot*[T](t:typedesc[ParticularModConvolution], a, b:ParticularModFFTType[T]):ParticularModFFTType[T] =
      result = a
      inplace_partial_dot(t, result, b, 0..<a.len)
  
    proc ifft*[T](t:typedesc[ParticularModConvolution], a:ParticularModFFTType[T]):seq[T] {.inline.} =
      result = a
      result.butterfly_inv
      let iz = T(a.len).inv()
      result.applyIt(it * iz)
    proc convolution*[T:StaticModInt](t:typedesc[ParticularModConvolution], a, b:seq[T]):auto {.inline.} = convolution(a, b)
    discard
  when not declared ATCODER_ARBITRARY_MOD_CONVOLUTION:
    const ATCODER_ARBITRARY_MOD_CONVOLUTION* = 1
    import std/sequtils
  
    type ArbitraryModConvolution* = object
      discard
  
    const
      m0 = 167772161.uint
      m1 = 469762049.uint
      m2 = 754974721.uint
    type
      mint0 = StaticModInt[m0.int]
      mint1 = StaticModInt[m1.int]
      mint2 = StaticModint[m2.int]
    type ArbitraryModFFTElem* = (mint0, mint1, mint2)
    proc setLen*(v:var (seq[mint0], seq[mint1], seq[mint2]), n:int) =
      v[0].setLen(n)
      v[1].setLen(n)
      v[2].setLen(n)
    
    proc `*=`(a:var ArbitraryModFFTElem, b:ArbitraryModFFTElem) =
      a[0] *= b[0];a[1] *= b[1];a[2] *= b[2]
    proc `-`(a:ArbitraryModFFTElem):auto = (-a[0], -a[1], -a[2])
  
    const
      r01 = mint1.init(m0).inv().uint
      r02 = mint2.init(m0).inv().uint
      r12 = mint2.init(m1).inv().uint
      r02r12 = r02 * r12 mod m2
  
    proc fft*[T:ModInt](t:typedesc[ArbitraryModConvolution], a:seq[T]):auto {.inline.} =
      type F = ParticularModConvolution
      var
        v0 = newSeq[mint0](a.len)
        v1 = newSeq[mint1](a.len)
        v2 = newSeq[mint2](a.len)
      for i in 0..<a.len:
        v0[i] = mint0.init(a[i].int)
        v1[i] = mint1.init(a[i].int)
        v2[i] = mint2.init(a[i].int)
      v0 = F.fft(v0)
      v1 = F.fft(v1)
      v2 = F.fft(v2)
      return (v0,v1,v2)
    proc inplace_partial_dot*(t:typedesc[ArbitraryModConvolution], a:var (seq[mint0], seq[mint1], seq[mint2]), b:(seq[mint0], seq[mint1], seq[mint2]), p:Slice[int]):auto =
      for i in p:
        a[0][i] *= b[0][i]
        a[1][i] *= b[1][i]
        a[2][i] *= b[2][i]
    proc dot*(t:typedesc[ArbitraryModConvolution], a, b:(seq[mint0], seq[mint1], seq[mint2])):auto =
      result = a
      t.inplace_partial_dot(result, b, 0..<a[0].len)
  
    proc calc_garner[T:ModInt](a0:seq[mint0], a1:seq[mint1], a2:seq[mint2], deg:int):seq[T] =
      let
        w1 = m0 mod T.umod
        w2 = w1 * m1 mod T.umod
      result = newSeq[T](deg)
      for i in 0..<deg:
        let
          (n0, n1, n2) = (a0[i].uint, a1[i].uint, a2[i].uint)
          b = (n1 + m1 - n0) * r01 mod m1
          c = ((n2 + m2 - n0) * r02r12 + (m2 - b) * r12) mod m2
        result[i] = T.init(n0 + b * w1 + c * w2)
  
    proc ifft*[T:ModInt](t:typedesc[ArbitraryModConvolution], a:(seq[mint0], seq[mint1], seq[mint2]), deg = -1):auto {.inline.} =
      type F = ParticularModConvolution
      let
        deg = if deg == -1: a[0].len else: deg
        a0 = F.ifft(a[0])
        a1 = F.ifft(a[1])
        a2 = F.ifft(a[2])
      return calc_garner[T](a0, a1, a2, deg)
    proc convolution*[T:ModInt](t:typedesc[ArbitraryModConvolution], a, b:seq[T]):seq[T] {.inline.} =
      proc f0(x:T):mint0 = mint0.init(x.int)
      proc f1(x:T):mint1 = mint1.init(x.int)
      proc f2(x:T):mint2 = mint2.init(x.int)
      let
        c0 = convolution(a.map(f0), b.map(f0))
        c1 = convolution(a.map(f1), b.map(f1))
        c2 = convolution(a.map(f2), b.map(f2))
      return calc_garner[T](c0, c1, c2, a.len + b.len - 1)
    discard
  import std/bitops

  template get_fft_type*[T:FiniteFieldElem](self: typedesc[T]):typedesc =
    when T.isStatic and countTrailingZeroBits(T.mod - 1) >= 20: ParticularModConvolution
    else: ArbitraryModConvolution
  proc fft*[T:FiniteFieldElem](a:seq[T]):auto =
    fft(get_fft_type(T), a)
  proc ifft*(a:auto, T:typedesc[FiniteFieldElem]):auto =
    ifft[T](get_fft_type(T), a)
  proc dot*(a, b:auto, T:typedesc[FiniteFieldElem]):auto =
    dot(get_fft_type(T), a, b)
  proc inplace_partial_dot*(a:var auto, b:auto, p:Slice[int], T:typedesc[FiniteFieldElem]) =
    inplace_partial_dot(get_fft_type(T), a, b, p)
  proc multiply*[T:FiniteFieldElem](a, b:seq[T]):seq[T] =
    convolution(get_fft_type(T), a, b)
# FormalPowerSeries {{{
when not declared ATCODER_FORMAL_POWER_SERIES:
  const ATCODER_FORMAL_POWER_SERIES* = 1
  
  import std/sequtils
  import std/strformat
  import std/options
  import std/macros
  import std/tables
  import std/algorithm
  

  type FormalPowerSeries*[T:FieldElem] = seq[T]

  template initFormalPowerSeries*[T:FieldElem](n:int):FormalPowerSeries[T] =
    FormalPowerSeries[T](newSeq[T](n))
  template initFormalPowerSeries*[T:FieldElem](data:seq or array):FormalPowerSeries[T] =
    when data is FormalPowerSeries[T]: data
    else:
      var result = newSeq[T](data.len)
      for i, it in data:
        result[i] = T.init(it)
      result
  template init*[T:FieldElem](self:typedesc[FormalPowerSeries[T]], data:typed):auto =
    initFormalPowerSeries[T](data)

  macro revise(a, b) =
    parseStmt(fmt"""let {a.repr} = if {a.repr} == -1: {b.repr} else: {a.repr}""")
  proc shrink*[T](self: var FormalPowerSeries[T]) =
    while self.len > 0 and self[^1] == 0: discard self.pop()
 
  # operators +=, -=, *=, mod=, -, /= {{{
  proc `+=`*(self: var FormalPowerSeries, r:FormalPowerSeries) =
    if r.len > self.len: self.setlen(r.len)
    for i in 0..<r.len: self[i] += r[i]
  proc `+=`*[T](self: var FormalPowerSeries[T], r:T) =
    if self.len == 0: self.setlen(1)
    self[0] += r
  
  proc `-=`*[T](self: var FormalPowerSeries[T], r:FormalPowerSeries[T]) =
    if r.len > self.len: self.setlen(r.len)
    for i in 0..<r.len: self[i] -= r[i]
#    self.shrink()
  proc `-=`*[T](self: var FormalPowerSeries[T], r:T) =
    if self.len == 0: self.setlen(1)
    self[0] -= r
#    self.shrink()

  proc `*=`*[T](self: var FormalPowerSeries[T], v:T) = self.applyIt(it * v)

  proc multRaw*[T](a, b:FormalPowerSeries[T]):FormalPowerSeries[T] =
    result = initFormalPowerSeries[T](a.len + b.len - 1)
    for i in 0..<a.len:
      for j in 0..<b.len:
        result[i + j] += a[i] * b[j]

  proc `*=`*[T](self: var FormalPowerSeries[T],  r: FormalPowerSeries[T]) =
    if self.len == 0 or r.len == 0:
      self.setlen(0)
    else:
      mixin multiply
      self = multiply(self, r)

  proc `mod=`*[T](self: var FormalPowerSeries[T], r:FormalPowerSeries[T]) =
    self -= (self div r) * r
    self.setLen(r.len - 1)

  proc `-`*[T](self: FormalPowerSeries[T]):FormalPowerSeries[T] =
    var ret = self
    ret.applyIt(-it)
    return ret
  proc `/=`*[T](self: var FormalPowerSeries[T], v:T) = self.applyIt(it / v)
  #}}}

  proc rev*[T](self: FormalPowerSeries[T], deg = -1):auto =
    result = self
    if deg != -1: result.setlen(deg)
    result.reverse
  
  proc pre*[T](self: FormalPowerSeries[T], sz:int):auto =
    result = self
    result.setlen(min(self.len, sz))
  
  proc `shr`*[T](self: FormalPowerSeries[T], sz:int):auto =
    if self.len <= sz: return initFormalPowerSeries[T](0)
    result = self
    if sz >= 1: result.delete(0, sz - 1)
  proc `shl`*[T](self: FormalPowerSeries[T], sz:int):auto =
    result = initFormalPowerSeries[T](sz)
    result = result & self
  
  proc diff*[T](self: FormalPowerSeries[T]):auto =
    let n = self.len
    result = initFormalPowerSeries[T](max(0, n - 1))
    for i in 1..<n:
      result[i - 1] = self[i] * T(i)
  
  proc integral*[T](self: FormalPowerSeries[T]):auto =
    let n = self.len
    result = initFormalPowerSeries[T](n + 1)
    result[0] = T(0)
    for i in 0..<n: result[i + 1] = self[i] / T(i + 1)
  proc EQUAL*[T](a, b:T):bool =
    when T is hasInf:
      return (abs(a - b) < T(0.0000001))
    else:
      return a == b

  # F(0) must not be 0
  proc inv*[T](self: FormalPowerSeries[T], deg = -1):auto =
    assert(not EQUAL(self[0], T(0)))
    deg.revise(self.len)
#    type F = T.get_fft_type()
#    when T is ModInt:
    when true:
      proc invFast[T](self: FormalPowerSeries[T]):auto =
#        assert(self[0] != T(0))
        let n = self.len
        var res = initFormalPowerSeries[T](1)
        res[0] = T(1) / self[0]
        var d = 1
        while d < n:
          var f, g = initFormalPowerSeries[T](2 * d)
          for j in 0..<min(n, 2 * d): f[j] = self[j]
          for j in 0..<d: g[j] = res[j]
          let g1 = fft(g)
          f = ifft(dot(fft(f), g1, T), T)
          for j in 0..<d:
            f[j] = T(0)
            f[j + d] = -f[j + d]
          f = ifft(dot(fft(f), g1, T), T)
          f[0..<d] = res[0..<d]
          res = f
          d = d shl 1
        return res.pre(n)
      var ret = self
      ret.setlen(deg)
      return ret.invFast()
#    else:
#      var ret = initFormalPowerSeries[T](1)
#      ret[0] = T(1) / self[0]
#      var i = 1
#      while i < deg:
#        ret = (ret + ret - ret * ret * self.pre(i shl 1)).pre(i shl 1)
#        i = i shl 1
#      return ret.pre(deg)
  proc `/=`*[T](self: var FormalPowerSeries[T], r: FormalPowerSeries[T]) =
    self *= r.inv()

  proc `div=`*[T](self: var FormalPowerSeries[T], r: FormalPowerSeries[T]) =
    if self.len < r.len:
      self.setlen(0)
    else:
      let n = self.len - r.len + 1
      self = (self.rev().pre(n) * r.rev().inv(n)).pre(n).rev(n)

  # operators +, -, *, div, mod {{{
  macro declareOp(op) =
    fmt"""proc `{op}`*[T](self:FormalPowerSeries[T];r:FormalPowerSeries[T] or T):FormalPowerSeries[T] = result = self;result {op}= r
proc `{op}`*[T](self: not FormalPowerSeries, r:FormalPowerSeries[T]):FormalPowerSeries[T] = result = initFormalPowerSeries[T](@[T(self)]);result {op}= r""".parseStmt
  
  declareOp(`+`)
  declareOp(`-`)
  declareOp(`*`)
  declareOp(`/`)
  
  proc `div`*[T](self, r:FormalPowerSeries[T]):FormalPowerSeries[T] = result = self;result.`div=` (r)
  proc `mod`*[T](self, r:FormalPowerSeries[T]):FormalPowerSeries[T] = result = self;result.`mod=` (r)
  # }}}
  
  # F(0) must be 1
  proc log*[T](self:FormalPowerSeries[T], deg = -1):auto =
    assert EQUAL(self[0], T(1))
    deg.revise(self.len)
    return (self.diff() * self.inv(deg)).pre(deg - 1).integral()

  proc expFast[T:FieldElem](self: FormalPowerSeries[T], deg:int):auto =
    deg.revise(self.len)
    assert EQUAL(self[0], T(0))

    var inv = newSeqOfCap[T](deg + 1)
    inv.add(T(0))
    inv.add(T(1))

    proc inplace_integral(F:var FormalPowerSeries[T]) =
      let
        n = F.len
      when T is FiniteFieldElem:
        let
          M = T.mod
      while inv.len <= n:
        let i = inv.len
        when T is FiniteFieldElem:
          inv.add((-inv[M mod i]) * (M div i))
        else:
          inv.add(T(1)/T(i))
      F = @[T(0)] & F
      for i in 1..n: F[i] *= inv[i]

    proc inplace_diff(F:var FormalPowerSeries[T]):auto =
      if F.len == 0: return
      F = F[1..<F.len]
      var coeff = T(1)
      let one = T(1)
      for i in 0..<F.len:
        F[i] *= coeff
        coeff += one
    mixin fft, ifft, dot
    type FFTType = fft(initFormalPowerSeries[T](0)).type
    mixin inplace_partial_dot, setLen
    var
      b = @[T(1), if 1 < self.len: self[1] else: T(0)]
      c = @[T(1)]
      z1f:FFTType
      z2 = @[T(1), T(0)]
      z2f = z2.fft
    var m = 2
    while m < deg:
      var y = b
      y.setLen(2 * m)
      var yf = y.fft
      z1f = z2f
      var zf = yf
      zf.setLen(m)
      inplace_partial_dot(zf, z1f, 0..<m, T)
      var z = zf.ifft(T)
      for i in 0..<m div 2: z[i] = T(0)
      zf = z.fft
      z = ifft(dot(zf, z1f, T), T)
      for i in 0..<m:z[i] *= -1
      c = c & z[m div 2..^1]
      z2 = c
      z2.setLen(2 * m)
      z2f = z2.fft
      var x = self[0..<min(self.len, m)]
      inplace_diff(x)
      x.add(T(0))
      var xf = x.fft
      inplace_partial_dot(xf, yf, 0..<m, T)
      x = xf.ifft(T)
      x -= b.diff()
      x.setLen(2 * m)
      for i in 0..<m - 1: x[m + i] = x[i]; x[i] = T(0)
      xf = x.fft
      inplace_partial_dot(xf, z2f, 0..<2*m, T)
      x = xf.ifft(T)
      discard x.pop()
      inplace_integral(x)
      for i in m..<min(self.len, 2 * m): x[i] += self[i]
      for i in 0..<m: x[i] = T(0)
      xf = x.fft
      inplace_partial_dot(xf, yf, 0..<2*m, T)
      x = xf.ifft(T)
      b = b & x[m..^1]
      m *= 2
    return b[0..<deg]

#   F(0) must be 0
  proc exp*[T](self: FormalPowerSeries[T], deg = -1):auto =
    assert EQUAL(self[0], T(0))
    deg.revise(self.len)

    when true:
      var self = self
      self.setLen(deg)
      return self.exp_fast(deg)
    else:
      ret = initFormalPowerSeries[T](@[T(1)])
      var i = 1
      while i < deg:
        ret = (ret * (pre(i shl 1) + T(1) - ret.log(i shl 1))).pre(i shl 1)
        i = i shl 1
      return ret.pre(deg)

  proc pow*[T:FieldElem](self: FormalPowerSeries[T], k:int, deg = -1):FormalPowerSeries[T] =
    mixin pow, init
    var self = self
    let n = self.len
    deg.revise(n)
    self.setLen(deg)
    for i in 0..<n:
      if not EQUAL(self[i], T(0)):
        let rev = T(1) / self[i]
        result = (((self * rev) shr i).log(deg) * T.init(k)).exp() * (self[i].pow(k))
        if i * k > deg: return initFormalPowerSeries[T](deg)
        result = (result shl (i * k)).pre(deg)
        if result.len < deg: result.setlen(deg)
        return
    return self

  proc eval*[T](self: FormalPowerSeries[T], x:T):T =
    var
      (r, w) = (T(0), T(1))
    for v in self:
      r += w * v
      w *= x
    return r

  proc powMod*[T](self: FormalPowerSeries[T], n:int, M:FormalPowerSeries[T]):auto =
    assert M[^1] != T(0)
    let modinv = M.rev().inv()
    proc getDiv(base:FormalPowerSeries[T]):FormalPowerSeries[T] =
      var base = base
      if base.len < M.len:
        base.setlen(0)
        return base
      let n = base.len - M.len + 1
      return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n)
    var
      n = n
      x = self
    result = initFormalPowerSeries[T](M.len - 1)
    result[0] = T(1)
    while n > 0:
      if (n and 1) > 0:
        result *= x
        result -= getDiv(result) * M
        result = result.pre(M.len - 1)
      x *= x
      x -= getDiv(x) * M
      x = x.pre(M.len - 1)
      n = n shr 1
# }}}
import std/options

type mint = StaticModInt[1000000009]

let N = nextInt()
let im = modSqrt(mint.init(-1)).get()

var
  f = mint(1)
  P = initFormalPowerSeries[mint](N + 1)
for i in 1..N:
  f *= mint(i)
  P[i] = mint(i + 1).pow(2)

let
  e1 = exp(P * im)
  e2 = exp(P * (-im))
  sinP = (e1 - e2) / (im * 2)
  cosP = (e1 + e2) / mint(2)
  ans = (sinP + cosP) * f

for i,a in ans:
  if i > 0:
    echo a
0