結果
| 問題 |
No.147 試験監督(2)
|
| コンテスト | |
| ユーザー |
yuruhiya
|
| 提出日時 | 2020-10-28 19:30:48 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,625 bytes |
| コンパイル時間 | 17,374 ms |
| コンパイル使用メモリ | 378,700 KB |
| 最終ジャッジ日時 | 2025-01-15 16:13:40 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 1 TLE * 3 |
ソースコード
#line 1 "a.cpp"
#pragma GCC optimize("O3")
#pragma GCC target("avx2")
#pragma GCC optimize("unroll-loops")
#include <iostream>
#if __has_include(<library/dump.hpp>)
using int1024_t = long long;
#else
#include <boost/multiprecision/cpp_int.hpp>
using namespace boost::multiprecision;
#endif
using namespace std;
#line 2 "/home/yuruhiya/programming/library/Math/Matrix.cpp"
#include <vector>
#include <cassert>
using namespace std;
template <class T> struct Matrix {
size_t h, w;
vector<vector<T>> A;
public:
static Matrix I(size_t n) {
Matrix A(n);
for (size_t i = 0; i < n; ++i) {
A[i][i] = 1;
}
return A;
}
Matrix() {}
Matrix(size_t _h, size_t _w) : h(_h), w(_w), A(h, vector<T>(w, 0)) {}
Matrix(size_t _h) : h(_h), w(_h), A(h, vector<T>(w, 0)){};
Matrix(const vector<vector<T>>& _A) : h(_A.size()), w(_A[0].size()), A(_A) {}
size_t height() const {
return h;
}
size_t width() const {
return w;
}
const vector<T>& operator[](int i) const {
return A[i];
}
vector<T>& operator[](int i) {
return A[i];
}
const vector<vector<T>>& operator*() const {
return A;
}
Matrix& operator+=(const Matrix& B) {
assert(h == B.height() && w == B.width());
for (size_t i = 0; i < h; ++i) {
for (size_t j = 0; j < w; ++j) {
A[i][j] += B[i][j];
}
}
return *this;
}
Matrix& operator-=(const Matrix& B) {
assert(h == B.height() && w == B.width());
for (size_t i = 0; i < h; ++i) {
for (size_t j = 0; j < w; ++j) {
A[i][j] -= B[i][j];
}
}
return *this;
}
Matrix& operator*=(const Matrix& B) {
size_t n = B.width();
assert(w == B.height());
vector<vector<T>> C(h, vector<T>(n, 0));
for (size_t i = 0; i < h; i++) {
for (size_t j = 0; j < n; j++) {
for (size_t k = 0; k < w; k++) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
A.swap(C);
return *this;
}
Matrix& operator^=(long long k) {
Matrix B = Matrix::I(h);
while (k > 0) {
if (k & 1) {
B *= *this;
}
*this *= *this;
k >>= 1;
}
A.swap(B.A);
return *this;
}
Matrix operator+(const Matrix& B) const {
return Matrix(*this) += B;
}
Matrix operator-(const Matrix& B) const {
return Matrix(*this) -= B;
}
Matrix operator*(const Matrix& B) const {
return Matrix(*this) *= B;
}
Matrix operator^(const long long k) const {
return Matrix(*this) ^= k;
}
Matrix pow(long long k) const {
return *this ^ k;
}
};
#line 4 "/home/yuruhiya/programming/library/Math/Fibonacci.cpp"
using namespace std;
template <class value_type> value_type Fibonacci(long long n) {
Matrix<value_type> A(vector<vector<value_type>>{{1, 1}, {1, 0}});
Matrix<value_type> B(vector<vector<value_type>>{{1}, {0}});
return (A.pow(n) * B)[1][0];
}
#line 4 "/home/yuruhiya/programming/library/Math/modint.cpp"
#include <utility>
using namespace std;
template <int MOD> struct modint {
using T = long long;
T n;
constexpr modint(const T x = 0) : n(x % MOD) {
if (n < 0) n += MOD;
}
constexpr int get_mod() const {
return MOD;
}
constexpr modint operator+() const {
return *this;
}
constexpr modint operator-() const {
return n ? MOD - n : 0;
}
constexpr modint& operator++() {
if (MOD <= ++n) n = 0;
return *this;
}
constexpr modint& operator--() {
if (n <= 0) n = MOD;
n--;
return *this;
}
constexpr modint operator++(int) {
modint t = *this;
++*this;
return t;
}
constexpr modint operator--(int) {
modint t = *this;
--*this;
return t;
}
constexpr modint next() const {
return ++modint(*this);
}
constexpr modint pred() const {
return --modint(*this);
}
constexpr modint operator+(const modint& m) const {
return modint(*this) += m;
}
constexpr modint operator-(const modint& m) const {
return modint(*this) -= m;
}
constexpr modint operator*(const modint& m) const {
return modint(*this) *= m;
}
constexpr modint operator/(const modint& m) const {
return modint(*this) /= m;
}
constexpr modint& operator+=(const modint& m) {
n += m.n;
if (n >= MOD) n -= MOD;
return *this;
}
constexpr modint& operator-=(const modint& m) {
n -= m.n;
if (n < 0) n += MOD;
return *this;
}
constexpr modint& operator*=(const modint& m) {
n = n * m.n % MOD;
return *this;
}
constexpr modint& operator/=(const modint& m) {
T a = m.n, b = MOD, u = 1, v = 0;
while (b) {
T t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
n = n * u % MOD;
if (n < 0) n += MOD;
return *this;
}
constexpr bool operator==(const modint& m) const {
return n == m.n;
}
constexpr bool operator!=(const modint& m) const {
return n != m.n;
}
template <class M> constexpr modint pow(M m) const {
if (0 <= m) {
modint t = n, res = 1;
while (m > 0) {
if (m & 1) res *= t;
t *= t;
m >>= 1;
}
return res;
} else {
return (modint(1) / n).pow(-m);
}
}
template <class M> constexpr modint operator^(M m) const {
return pow(m);
}
friend ostream& operator<<(ostream& os, const modint<MOD>& m) {
return os << m.n;
}
friend istream& operator>>(istream& is, modint<MOD>& m) {
long long x;
cin >> x;
m = modint(x);
return is;
}
};
using mint = modint<1000000007>;
using VM = vector<mint>;
inline mint operator""_m(unsigned long long n) {
return n;
}
#line 14 "a.cpp"
mint pow_mod(mint a, int1024_t b) {
mint res = 1, k = a;
while (b > 0) {
if (b % 2 == 1) res *= k;
k *= k;
b /= 2;
}
return res;
}
int main() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
mint ans = 1;
int n;
cin >> n;
while (n--) {
long long a;
int1024_t b;
cin >> a >> b;
ans *= pow_mod(Fibonacci<mint>(a + 2), b);
}
cout << ans << endl;
}
yuruhiya