結果

問題 No.1270 Range Arrange Query
ユーザー jupiro
提出日時 2020-10-29 00:02:26
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 738 ms / 7,000 ms
コード長 6,762 bytes
コンパイル時間 1,530 ms
コンパイル使用メモリ 146,264 KB
最終ジャッジ日時 2025-01-15 16:18:25
ジャッジサーバーID
(参考情報)
judge1 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 15
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <string>
#include <sstream>
#include <stack>
#include <algorithm>
#include <cmath>
#include <queue>
#include <bitset>
#include <iomanip>
#include <limits>
#include <chrono>
#include <random>
#include <array>
#include <unordered_map>
#include <functional>
#include <complex>
#include <numeric>
#include <cctype>
#include <map>
#include <set>
#include <cstdlib>
#include <bitset>
#include <tuple>
#include <assert.h>
#include <deque>
#include <utility>
#include <fstream>
using namespace std;
typedef long long ll;
using ull = unsigned long long;
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
template<typename T> T gcd(T a, T b) { a = abs(a), b = abs(b); while (b > 0) { tie(a, b) = make_pair(b, a % b); } return a; }
mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
constexpr long long INF = 1LL << 60;
constexpr int inf = 1000000007;
//constexpr long long mod = 1000000007LL;
constexpr long long mod = 998244353;
constexpr int MAX = 1100000;
struct Mo {
int n;
vector<pair<int, int>> lr;
Mo(int n) :n(n) {}
//[l, r)
void add(int l, int r) {
lr.emplace_back(l, r);
}
template<typename AL, typename AR, typename EL, typename ER, typename O>
void build(const AL& add_left, const AR& add_right, const EL& erase_left, const ER& erase_right, const O& out) {
int query_size = lr.size();
int bs = n / min(n, (int)sqrt(query_size));
vector<int> ord(query_size);
iota(ord.begin(), ord.end(), 0);
sort(ord.begin(), ord.end(), [&](auto a, auto b) {
int a_block_index = lr[a].first / bs;
int b_block_index = lr[b].first / bs;
if (a_block_index != b_block_index) return a_block_index < b_block_index;
else return (a_block_index & 1) ? lr[a].second > lr[b].second : lr[a].second < lr[b].second;
});
int l = 0, r = 0;
for (auto idx : ord) {
while (l > lr[idx].first) add_left(--l);
while (r < lr[idx].second) add_right(r++);
while (l < lr[idx].first) erase_left(l++);
while (r > lr[idx].second) erase_right(--r);
out(idx);
}
}
template<typename A, typename E, typename O>
void build(const A& add, const E& erase, const O& out) {
build(add, add, erase, erase, out);
}
};
template<typename T>
struct BIT {
int n;
vector<T> bit;
BIT() :n(0) {}
BIT(int _n) :n(_n) { bit = vector<T>(n + 1); }
void add1(int idx, T val) {
for (int i = idx; i <= n; i += i & -i) bit[i] += val;
}
T sum1(int idx) {
T res = 0;
for (int i = idx; i > 0; i -= i & -i) res += bit[i];
return res;
}
//0-indexed
void add(int idx, T val) { add1(idx + 1, val); }
//0-indexed [left, right)
T sum(int left, int right) { return sum1(right) - sum1(left); }
int lower_bound(T x) {
int res = 0;
int k = 1;
while (2 * k <= n) k <<= 1;
for (; k > 0; k >>= 1) {
if (res + k <= n and bit[res + k] < x) {
x -= bit[res + k];
res += k;
}
}
return res;
}
};
/**
* @brief Lazy-Segment-Tree()
* @docs docs/lazy-segment-tree.md
*/
template< typename Monoid, typename OperatorMonoid, typename F, typename G, typename H >
struct LazySegmentTree {
int sz, height;
vector< Monoid > data;
vector< OperatorMonoid > lazy;
const F f;
const G g;
const H h;
const Monoid M1;
const OperatorMonoid OM0;
LazySegmentTree(int n, const F f, const G g, const H h,
const Monoid& M1, const OperatorMonoid OM0)
: f(f), g(g), h(h), M1(M1), OM0(OM0) {
sz = 1;
height = 0;
while (sz < n) sz <<= 1, height++;
data.assign(2 * sz, M1);
lazy.assign(2 * sz, OM0);
}
void set(int k, const Monoid& x) {
data[k + sz] = x;
}
void build() {
for (int k = sz - 1; k > 0; k--) {
data[k] = f(data[2 * k + 0], data[2 * k + 1]);
}
}
inline void propagate(int k) {
if (lazy[k] != OM0) {
lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);
lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);
data[k] = apply(k);
lazy[k] = OM0;
}
}
inline Monoid apply(int k) {
return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]);
}
inline void recalc(int k) {
while (k >>= 1) data[k] = f(apply(2 * k + 0), apply(2 * k + 1));
}
inline void thrust(int k) {
for (int i = height; i > 0; i--) propagate(k >> i);
}
void update(int a, int b, const OperatorMonoid& x) {
if (a >= b) return;
thrust(a += sz);
thrust(b += sz - 1);
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) lazy[l] = h(lazy[l], x), ++l;
if (r & 1) --r, lazy[r] = h(lazy[r], x);
}
recalc(a);
recalc(b);
}
Monoid query(int a, int b) {
if (a >= b) return M1;
thrust(a += sz);
thrust(b += sz - 1);
Monoid L = M1, R = M1;
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) L = f(L, apply(l++));
if (r & 1) R = f(apply(--r), R);
}
return f(L, R);
}
Monoid operator[](const int& k) {
return query(k, k + 1);
}
};
template< typename Monoid, typename OperatorMonoid, typename F, typename G, typename H >
LazySegmentTree< Monoid, OperatorMonoid, F, G, H > get_lazy_segment_tree
(int N, const F& f, const G& g, const H& h, const Monoid& M1, const OperatorMonoid& OM0) {
return { N, f, g, h, M1, OM0 };
}
int main()
{
cin.tie(nullptr);
ios::sync_with_stdio(false);
int n, Q; cin >> n >> Q;
BIT<ll> b1(n), b2(n);
ll inv = 0;
vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i], a[i] -= 1;
for (int i = 0; i < n; i++) {
inv += b2.sum(a[i] + 1, n);
b2.add(a[i], 1);
}
Mo mo(n);
for (int i = 0; i < Q; i++) {
int l, r; cin >> l >> r;
l--;
mo.add(l, r);
}
auto f = [&](ll a, ll b)->ll {
return min(a, b);
};
auto g = [&](ll a, ll b)->ll {
return a + b;
};
auto lsg = get_lazy_segment_tree(n, f, g, g, INF, 0);
for (int i = 0; i < n; i++) lsg.set(i, 0); lsg.build();
for (int i = 0; i < n; i++) {
lsg.update(a[i] + 1, n, 1);
}
vector<ll> res(Q);
auto add_left = [&](int idx)->void {
b1.add(a[idx], -1);
inv -= b1.sum(a[idx] + 1, n) + b2.sum(0, a[idx]);
lsg.update(0, a[idx], -1);
};
auto add_right = [&](int idx)->void {
b2.add(a[idx], -1);
inv -= b1.sum(a[idx] + 1, n) + b2.sum(0, a[idx]);
lsg.update(a[idx] + 1, n, -1);
};
auto erase_left = [&](int idx)->void {
b1.add(a[idx], 1);
inv += b1.sum(a[idx] + 1, n) + b2.sum(0, a[idx]);
lsg.update(0, a[idx], 1);
};
auto erase_right = [&](int idx)->void {
b2.add(a[idx], 1);
inv += b1.sum(a[idx] + 1, n) + b2.sum(0, a[idx]);
lsg.update(a[idx] + 1, n, 1);
};
auto out = [&](int idx)->void {
ll len = mo.lr[idx].second - mo.lr[idx].first;
ll mn = lsg.query(0, n);
res[idx] = inv + mn * len;
};
mo.build(add_left, add_right, erase_left, erase_right, out);
for (int i = 0; i < res.size(); i++) cout << res[i] << "\n";
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0