結果
問題 |
No.891 隣接3項間の漸化式
|
ユーザー |
👑 ![]() |
提出日時 | 2020-10-31 12:01:52 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 2,791 bytes |
コンパイル時間 | 1,822 ms |
コンパイル使用メモリ | 172,976 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-22 04:52:22 |
合計ジャッジ時間 | 3,315 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 39 |
ソースコード
#include<bits/stdc++.h> using namespace std; using LL = long long; using ULL = unsigned long long; #define rep(i,n) for(int i=0; i<(n); i++) template<ULL M> struct static_modint { ULL x; static_modint(ULL val = 0) : x(val) {} static_modint& operator+=(static_modint r) { x += r.x; if (x >= M) x -= M; return *this; } static_modint operator+(static_modint r) const { static_modint res = x; return res += r; } static_modint& operator-=(static_modint r) { x += M - r.x; if (x >= M) x -= M; return *this; } static_modint operator-(static_modint r) const { static_modint res = x; return res -= r; } static_modint& operator*=(static_modint r) { x = x * r.x % M; return *this; } static_modint operator*(static_modint r) const { return static_modint(x * r.x % M); } static_modint pow(ULL r) const { if (r == 0) return static_modint(1); static_modint res = pow(r / 2); res *= res; if (r % 2) res *= *this; return res; } static_modint& operator/=(static_modint r) { *this *= r.pow(M - 2); return *this; } static_modint operator/(static_modint r) const { return *this * (r.pow(M - 2)); } ULL& operator*() { return x; } const ULL& operator*() const { return x; } bool operator==(static_modint r) const { return x == r; } bool operator!=(static_modint r) const { return x != r; } }; template<class Elem, size_t matrix_sz> struct static_matrix { Elem X[matrix_sz][matrix_sz] = {}; static static_matrix id() { static_matrix res; rep(i, matrix_sz) res[i][i] = 1; return res; } Elem* operator[](int x) { return X[x]; } const Elem* operator[](int x) const { return X[x]; } static_matrix operator+(const static_matrix& r) const { static_matrix res; rep(i, matrix_sz) rep(j, matrix_sz) res[i][j] = X[i][j] + r[i][j]; return res; } static_matrix operator-(const static_matrix& r) const { static_matrix res; rep(i, matrix_sz) rep(j, matrix_sz) res[i][j] = X[i][j] - r[i][j]; return res; } static_matrix operator*(const static_matrix& r) const { static_matrix res; rep(i, matrix_sz) rep(j, matrix_sz) rep(k, matrix_sz) res[i][j] += X[i][k] * r[k][j]; return res; } static_matrix pow(ULL N) const { if (N == 0) return id(); static_matrix res = pow(N / 2); res = res * res; if (N % 2 == 1) res = res * *this; return res; } }; const ULL M = 1000000007; using MLL = static_modint<M>; using Mat = static_matrix<MLL, 2>; Mat G; int main() { MLL a, b; ULL N; cin >> *a >> *b >> N; G[0][0] = a; G[1][0] = b; G[0][1] = 1; G[1][1] = 0; G = G.pow(N); cout << *G[0][1] << endl; return 0; }