結果
| 問題 |
No.899 γatheree
|
| コンテスト | |
| ユーザー |
iiljj
|
| 提出日時 | 2020-11-02 03:42:37 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 431 ms / 2,000 ms |
| コード長 | 21,445 bytes |
| コンパイル時間 | 2,807 ms |
| コンパイル使用メモリ | 223,412 KB |
| 最終ジャッジ日時 | 2025-01-15 18:57:49 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 23 |
ソースコード
/* #region Head */
// #define _GLIBCXX_DEBUG
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll, ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vc<vc<T>>;
using vll = vc<ll>;
using vvll = vvc<ll>;
using vld = vc<ld>;
using vvld = vvc<ld>;
using vs = vc<string>;
using vvs = vvc<string>;
template <class T, class U> using um = unordered_map<T, U>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqa = priority_queue<T, vc<T>, greater<T>>;
template <class T> using us = unordered_set<T>;
#define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i))
#define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i))
#define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i))
#define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d))
#define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d))
#define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
#define ALL(x) begin(x), end(x)
#define SIZE(x) ((ll)(x).size())
#define PERM(c) \
sort(ALL(c)); \
for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c)))
#define UNIQ(v) v.erase(unique(ALL(v)), v.end());
#define CEIL(a, b) (((a) + (b)-1) / (b))
#define endl '\n'
#define sqrt sqrtl
#define floor floorl
#define log2 log2l
constexpr ll INF = 1'010'000'000'000'000'017LL;
constexpr int IINF = 1'000'000'007LL;
constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7
// constexpr ll MOD = 998244353;
constexpr ld EPS = 1e-12;
constexpr ld PI = 3.14159265358979323846;
template <typename T> istream &operator>>(istream &is, vc<T> &vec) { // vector 入力
for (T &x : vec) is >> x;
return is;
}
template <typename T> ostream &operator<<(ostream &os, vc<T> &vec) { // vector 出力 (for dump)
os << "{";
REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", ");
os << "}";
return os;
}
template <typename T> ostream &operator>>(ostream &os, vc<T> &vec) { // vector 出力 (inline)
REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " ");
return os;
}
template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &pair_var) { // pair 入力
is >> pair_var.first >> pair_var.second;
return is;
}
template <typename T, typename U> ostream &operator<<(ostream &os, pair<T, U> &pair_var) { // pair 出力
os << "(" << pair_var.first << ", " << pair_var.second << ")";
return os;
}
// map, um, set, us 出力
template <class T> ostream &out_iter(ostream &os, T &map_var) {
os << "{";
REPI(itr, map_var) {
os << *itr;
auto itrcp = itr;
if (++itrcp != map_var.end()) os << ", ";
}
return os << "}";
}
template <typename T, typename U> ostream &operator<<(ostream &os, map<T, U> &map_var) { return out_iter(os, map_var); }
template <typename T, typename U> ostream &operator<<(ostream &os, um<T, U> &map_var) {
os << "{";
REPI(itr, map_var) {
auto [key, value] = *itr;
os << "(" << key << ", " << value << ")";
auto itrcp = itr;
if (++itrcp != map_var.end()) os << ", ";
}
os << "}";
return os;
}
template <typename T> ostream &operator<<(ostream &os, set<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, us<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, pq<T> &pq_var) {
pq<T> pq_cp(pq_var);
os << "{";
if (!pq_cp.empty()) {
os << pq_cp.top(), pq_cp.pop();
while (!pq_cp.empty()) os << ", " << pq_cp.top(), pq_cp.pop();
}
return os << "}";
}
// dump
#define DUMPOUT cerr
void dump_func() { DUMPOUT << endl; }
template <class Head, class... Tail> void dump_func(Head &&head, Tail &&... tail) {
DUMPOUT << head;
if (sizeof...(Tail) > 0) DUMPOUT << ", ";
dump_func(move(tail)...);
}
// chmax (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmax(T &xmax, const U &x, Comp comp = {}) {
if (comp(xmax, x)) {
xmax = x;
return true;
}
return false;
}
// chmin (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmin(T &xmin, const U &x, Comp comp = {}) {
if (comp(x, xmin)) {
xmin = x;
return true;
}
return false;
}
// ローカル用
#define DEBUG_
#ifdef DEBUG_
#define DEB
#define dump(...) \
DUMPOUT << " " << string(#__VA_ARGS__) << ": " \
<< "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl \
<< " ", \
dump_func(__VA_ARGS__)
#else
#define DEB if (false)
#define dump(...)
#endif
#define VAR(type, ...) \
type __VA_ARGS__; \
cin >> __VA_ARGS__;
template <typename T> istream &operator,(istream &is, T &rhs) { return is >> rhs; }
template <typename T> ostream &operator,(ostream &os, const T &rhs) { return os << ' ' << rhs; }
struct AtCoderInitialize {
static constexpr int IOS_PREC = 15;
static constexpr bool AUTOFLUSH = false;
AtCoderInitialize() {
ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
cout << fixed << setprecision(IOS_PREC);
if (AUTOFLUSH) cout << unitbuf;
}
} ATCODER_INITIALIZE;
void Yn(bool p) { cout << (p ? "Yes" : "No") << endl; }
void YN(bool p) { cout << (p ? "YES" : "NO") << endl; }
/* #endregion */
// #include <atcoder/all>
// using namespace atcoder;
/* #region Graph */
// エッジ(本来エッジは双方向だが,ここでは単方向で管理)
template <class weight_t = int, class flow_t = int> struct Edge {
ll src; // エッジ始点となる頂点
ll dst; // エッジ終点となる頂点
weight_t weight; // 重み
flow_t cap;
Edge() : src(0), dst(0), weight(0) {}
Edge(ll src, ll dst, weight_t weight) : src(src), dst(dst), weight(weight) {}
Edge(ll src, ll dst, weight_t weight, flow_t cap) : src(src), dst(dst), weight(weight), cap(cap) {}
// Edge 標準出力
friend ostream &operator<<(ostream &os, Edge &edge) {
os << "(" << edge.src << " -> " << edge.dst << ", " << edge.weight << ")";
return os;
}
};
// 同じ頂点を始点とするエッジ集合
template <class weight_t = int, class flow_t = int> class Node : public vc<Edge<weight_t, flow_t>> {
public:
ll idx;
Node() : vc<Edge<weight_t, flow_t>>() {}
// void add(int a, int b, weight_t w, flow_t cap) { this->emplace_back(a, b, w, cap); };
};
// graph[i] := 頂点 i を始点とするエッジ集合
template <class weight_t = int, class flow_t = int> class Graph : public vc<Node<weight_t, flow_t>> {
public:
Graph() : vc<Node<weight_t, flow_t>>() {}
Graph(int n) : vc<Node<weight_t, flow_t>>(n) { REP(i, 0, n)(*this)[i].idx = i; }
// 単方向
void add_arc(int a, int b, weight_t w = 1, flow_t cap = 1) { (*this)[a].emplace_back(a, b, w, cap); }
// 双方向
void add_edge(int a, int b, weight_t w = 1, flow_t cap = 1) { add_arc(a, b, w, cap), add_arc(b, a, w, cap); }
};
// using Array = vc<Weight>;
// using Matrix = vc<Array>;
/* #endregion */
/* #region LazySegTree */
// 遅延評価セグメント木,区間更新したいときに使うやつ
// 遅延伝播セグメント木について(旧:遅延評価セグメント木について) - beet's soil
// http://beet-aizu.hatenablog.com/entry/2017/12/01/225955
template <typename T, typename E> // T: 要素,E: 作用素
struct LazySegmentTree {
using F = function<T(T, T)>; // 要素と要素をマージする関数.max とか.
using G = function<T(T, E)>; // 要素に作用素を作用させる関数.加算とか.
using H = function<E(E, E)>; // 作用素と作用素をマージする関数.
ll n, height; // 木のノード数と高さ
ll nn; // 外から見た要素数
F f; // 区間クエリで使う演算,結合法則を満たす演算.区間最大値のクエリを投げたいなら max 演算.
G g; // 要素更新で使う演算,たとえば加算など.g(更新前,加算値) の形で使う.
H h; // 遅延評価をまとめる際に使う演算,たとえば加算など.
T ti; // 値配列の初期値.演算 f, h に関する単位元.区間最大値なら単位元は 0. (a>0 なら max(a,0)=max(0,a)=a)
E ei; // 遅延配列の初期値.演算 f, h に関する単位元.区間最大値なら単位元は 0.
vc<T> dat; // 1-indexed 値配列 (index は木の根から順に 1 | 2 3 | 4 5 6 7 | 8 9 10 11 12 13 14 15 | ...)
vc<E> laz; // 1-indexed 遅延配列
// コンストラクタ.
LazySegmentTree(F f, G g, H h, T ti, E ei) : f(f), g(g), h(h), ti(ti), ei(ei) {}
// 指定要素数の遅延セグメント木を初期化する
void init(ll n_) {
nn = n_;
n = 1;
height = 0;
while (n < n_) n <<= 1, height++;
dat.assign(2 * n, ti);
laz.assign(2 * n, ei);
}
// ベクトルから遅延セグメント木を構築する
void build(const vc<T> &v) {
ll n_ = SIZE(v);
init(n_);
REP(i, 0, n_) dat[n + i] = v[i];
REPR(i, n - 1, 1) dat[i] = f(dat[(i << 1) | 0], dat[(i << 1) | 1]);
}
// 木のノード k のみに遅延評価を反映する
inline T reflect(ll k) { return laz[k] == ei ? dat[k] : g(dat[k], laz[k]); }
// 木のノード k について遅延伝搬処理を行う.
// これにより dat[k] は更新を反映した状態になる.
inline void propagate(ll k) {
if (laz[k] == ei) return;
// 直接の子ノードに遅延配列内容を伝搬
laz[(k << 1) | 0] = h(laz[(k << 1) | 0], laz[k]); // 子,左側
laz[(k << 1) | 1] = h(laz[(k << 1) | 1], laz[k]); // 子,右側
dat[k] = reflect(k);
laz[k] = ei;
}
// 木のノード k に関して,親から順に伝搬処理を行う
// これにより dat[k] とその全ての親ノード dat[k>>1], dat[k>>2], ..., dat[1] が更新される.
// 更新は根 dat[1] 側から順に行う.
inline void thrust(ll k) { REPR(i, height, 1) propagate(k >> i); }
// 木のノード k に関して,子から順に値配列の再計算を行う
inline void recalc(ll k) {
while (k >>= 1) dat[k] = f(reflect((k << 1) | 0), reflect((k << 1) | 1));
}
// 半開区間 [a, b) を更新する
void update(ll a, ll b, E x) {
if (a >= b) return;
// assert(a < b)
thrust(a += n); // インデックス a の更新
thrust(b += n - 1); // インデックス b-1 の更新
// 以降では l, r は木のノード
for (ll l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) laz[l] = h(laz[l], x), l++; // 木のノード l が,親から見て右側の子である場合
if (r & 1) --r, laz[r] = h(laz[r], x); // 木のノード r が,親から見て右側の子である場合
}
recalc(a);
recalc(b);
}
// インデックス a の要素の値を x にする.
void set_val(ll a, T x) {
thrust(a += n);
dat[a] = x;
laz[a] = ei;
recalc(a);
}
// 半開区間 [a, b) に対するクエリを実行する
T query(ll a, ll b) {
if (a >= b) return ti;
// assert(a<b)
thrust(a += n); // インデックス a の更新
thrust(b += n - 1); // インデックス b-1 の更新
T vl = ti, vr = ti;
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) vl = f(vl, reflect(l++));
if (r & 1) vr = f(reflect(--r), vr);
}
return f(vl, vr);
}
template <typename C> ll find(ll st, C &check, T &acc, ll k, ll l, ll r) {
if (l + 1 == r) {
acc = f(acc, reflect(k));
return check(acc) ? k - n : -1;
}
propagate(k);
ll m = (l + r) >> 1;
if (m <= st) return find(st, check, acc, (k << 1) | 1, m, r);
if (st <= l && !check(f(acc, dat[k]))) {
acc = f(acc, dat[k]);
return -1;
}
ll vl = find(st, check, acc, (k << 1) | 0, l, m);
if (~vl) return vl;
return find(st, check, acc, (k << 1) | 1, m, r);
}
// check が真となる要素を探して,そのインデックスを返す.
template <typename C> ll find(ll st, C &check) {
T acc = ti;
return find(st, check, acc, 1, 0, n);
}
// セグメント木上の二分探索.
// @param l 区間左端
// @param check 条件
// @return check(query(l,r)) が真となる最大の r(半開区間であることに注意).
int max_right(int l, const function<bool(T)> &check) {
assert(0 <= l && l <= nn);
assert(check(ti));
if (l == nn) return nn;
l += n;
for (int i = height; i >= 1; i--) propagate(l >> i);
T sm = ti;
do {
while (l % 2 == 0) l >>= 1;
if (!check(f(sm, dat[l]))) {
while (l < n) {
propagate(l);
l = (2 * l);
if (check(f(sm, dat[l]))) {
sm = f(sm, dat[l]);
l++;
}
}
return l - n;
}
sm = f(sm, dat[l]);
l++;
} while ((l & -l) != l);
return nn;
}
// セグメント木上の二分探索.
// @param r 区間右端(半開区間であることに注意)
// @param check 条件
// @return check(query(l,r)) が真となる最小の l(半開区間であることに注意).
int min_left(int r, const function<bool(T)> &check) {
assert(0 <= r && r <= nn);
assert(check(ti));
if (r == 0) return 0;
r += n;
for (int i = height; i >= 1; i--) propagate((r - 1) >> i);
T sm = ti;
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!check(f(dat[r], sm))) {
while (r < n) {
propagate(r);
r = (2 * r + 1);
if (check(f(dat[r], sm))) {
sm = f(dat[r], sm);
r--;
}
}
return r + 1 - n;
}
sm = f(dat[r], sm);
} while ((r & -r) != r);
return 0;
}
// セグ木の中身を標準出力する.
void _dump() {
REP(k, 0, nn) {
T val = query(k, k + 1);
cout << val << (k == nn - 1 ? '\n' : ' ');
}
}
};
/* #endregion */
template <class weight_t = int, class flow_t = int> struct BFSNumbering {
Graph<weight_t, flow_t> &graph;
int n;
int depth;
vc<int> tour; // tour[i] := BFS 順で i 番目のノード
vc<int> idx; // idx[i] := ノード i が BFS 順で何番目か
vc<vc<int>> L; // L[d][i] := ノード i から深さ d のノード左端(半開区間)が,BFS 順で何番目か
vc<vc<int>> R; // R[d][i] := ノード i から深さ d のノード右端(半開区間)が,BFS 順で何番目か
vc<int> par;
BFSNumbering(Graph<weight_t, flow_t> &graph, int n, int depth)
: graph(graph), n(n), depth(depth), tour(n, -1), idx(n, -1), L(depth, vc<int>(n, -1)), R(depth, vc<int>(n, -1)),
par(n, -1) {
build();
}
// bfs
void build(int root = 0) {
int ptr = 0;
queue<int> que;
que.push(root);
idx[root] = ptr;
tour[ptr++] = root;
while (!que.empty()) {
int curr = que.front();
que.pop();
for (Edge<weight_t, flow_t> &edge : graph[curr]) {
if (idx[edge.dst] != -1) continue;
que.push(edge.dst);
idx[edge.dst] = ptr;
tour[ptr++] = edge.dst;
par[edge.dst] = curr;
// i=0: dst の親 = cur から見て距離 1 の頂点の情報
// i=1: dst の親の親 = cur の親 から見て距離 2 の頂点の情報
int cursor = edge.dst;
REP(i, 0, depth) {
cursor = par[cursor];
if (cursor == -1) break;
if (L[i][cursor] == -1) L[i][cursor] = idx[edge.dst];
R[i][cursor] = idx[edge.dst] + 1; // 半開区間で保持する
}
}
} // end while
// dump(L, R);
} // end build
/**
* 頂点 v に対する取得クエリを処理する。
* @param ti 単位元
* @param q 列に対するクエリを返す演算. (int, int) -> T.
* @param f 演算結果をマージする演算. (T, T) -> T.
*/
template <typename T, typename Q, typename F> T query(int v, const T &ti, const Q &q, const F &f) {
T ret = ti;
ll up = 0;
vll parents(depth + 1, -1);
parents[0] = v;
REP(i, 0, depth) {
if (par[parents[i]] != -1)
parents[++up] = par[parents[i]];
else
break;
}
// dump(par, parents, up);
ret = f(ret, q(idx[parents[up]], idx[parents[up]] + 1)); // 一番上まで登ったところ
ll down = depth - up;
REP(i, 0, down) {
if (L[i][parents[up]] != -1) ret = f(ret, q(L[i][parents[up]], R[i][parents[up]])); // 親の子
}
ll lb = up - down; // 木のどの低さの部分まで見たか
// dump(ret);
REPR(i, up - 1, 0) {
// i 自体
if (lb == i + 1) {
ret = f(ret, q(idx[parents[i]], idx[parents[i]] + 1));
lb--;
}
// 下に (depth - i) 回降りることができる
// j 回降りたところは i-j
// ここで i-j=lb-1 のとき j = i-(lb-1)
REP(j, i - (lb - 1) - 1, depth - i) { // 深さ 1 がインデックス 0 なので1引く
// dump(i, j, lb);
if (L[j][parents[i]] != -1) {
ret = f(ret, q(L[j][parents[i]], R[j][parents[i]])); // 親の子
// dump(i, j, ret);
}
}
lb = i - (depth - i);
// dump(i, ret);
}
return ret;
// memo
// if (p[p[v]] != -1) {
// ret = f(ret, q(idx[p[p[v]]], idx[p[p[v]]] + 1)); // 親の親
// }
// ret = f(ret, q(idx[p[v]], idx[p[v]] + 1)); // 親
// ret = f(ret, q(L[0][p[v]], R[0][p[v]])); // 親の子
// if (L[0][v] != -1) ret = f(ret, q(L[0][v], R[0][v]));
// if (L[1][v] != -1) ret = f(ret, q(L[1][v], R[1][v]));
}
};
// Problem
void solve() {
VAR(ll, n);
Graph<> graph(n);
REP(i, 0, n - 1) {
VAR(ll, u, v);
graph.add_edge(u, v);
}
BFSNumbering<> numbering(graph, n, 2); // 距離 2 まで考える
using T = ll; // 要素
using E = pll; // 作用素
auto f = [](T a, T b) -> T { // 要素のマージ
return a + b;
};
auto g = [](T a, E b) -> T { // 要素に作用素を作用させる
(void)a;
return b.second;
};
auto h = [](E a, E b) -> E { // 作用素のマージ
if (a.first < b.first) return b;
return a;
};
T ti = 0; // 要素の単位元
E ei = {-1, 0}; // 作用素の単位元 (世代,値)
LazySegmentTree<T, E> seg(f, g, h, ti, ei);
ll gen = 0;
vll a(n);
cin >> a;
// a をツアー順にする
vll data(n);
REP(i, 0, n) data[i] = a[numbering.tour[i]];
seg.build(data);
VAR(ll, q);
REP(i, 0, q) {
VAR(ll, x); //
auto query = [&](int a, int b) -> ll { return seg.query(a, b); };
auto merge = [](ll a, ll b) -> ll { return a + b; };
ll result = numbering.query(x, 0ll, query, merge);
cout << result << endl;
gen++;
auto update = [&](int a, int b) -> ll {
seg.update(a, b, {gen, 0});
return true;
};
auto merge2 = [](bool a, bool b) -> bool { return a & b; };
numbering.query(x, true, update, merge2);
gen++;
seg.update(numbering.idx[x], numbering.idx[x] + 1, {gen, result});
}
}
// entry point
int main() {
solve();
return 0;
}
iiljj