結果
問題 | No.1278 どんな級数? |
ユーザー |
👑 |
提出日時 | 2020-11-09 05:45:17 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 2,591 bytes |
コンパイル時間 | 1,129 ms |
コンパイル使用メモリ | 116,932 KB |
最終ジャッジ日時 | 2025-01-15 21:50:38 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 63 |
ソースコード
#include <cassert> #include <cmath> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <bitset> #include <complex> #include <deque> #include <functional> #include <iostream> #include <map> #include <numeric> #include <queue> #include <set> #include <sstream> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using Int = long long; template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } /* f(a_1, ..., a_{n-1}, 2 b - 1) + f(a_1, ..., a_{n-1}, 2 b) = \sum_{1<k_1<...<k_{n-1}<l} k_1^{-a_1} ... k_{n-1}^{-a_{n-1}} l^{-2b} \sum_{a_1=1}^\infty ... \sum_{a_{n-1}}^\infty \sum_{b=1}^\infty \sum_{1<k_1<...<k_{n-1}<l} k_1^{-a_1} ... k_{n-1}^{-a_{n-1}} l^{-2b} = \sum_{1<k_1<...<k_{n-1}<l} 1 / (k_1 - 1) ... 1 / (k_{n-1} - 1) 1 / (l^2 - 1) \sum_{l=k+1}^\infty (1/2) (1 / (l - 1) + 1 / (l + 1)) = (1/2) (1 / k + 1 / (k + 1)) \sum_{l=k+1}^\infty (1 / (l - 1)) (p (1 / l) + q (1 / (l + 1))) = \sum_{l=k+1}^\infty (p (1 / (l - 1) - 1 / l) + (q/2) (1 / (l - 1) + 1 / (l + 1)) = (p + q/2) (1 / l) + (q/2) (1 / (l + 1)) */ /* f(a_1, ..., a_{n-1}, a_n) + f(a_1, ..., a_{n-1}, a_n - 1, 1) = z(a_n, ..., a_1) - z(a_n, ..., a_2) + ... + (-1)^{n-1} z(a_n) + (-1)^n (a_n >= 2) z(4) - 1 z(3, 1) - z(3) + 1 z(2, 2) - z(2) + 1 z(2, 1, 1) - z(2, 1) + z(2) - 1 total: 3 z(4) - 2 z(3) z(5) - 1 z(4, 1) - z(4) + 1 z(3, 2) - z(3) + 1 z(2, 3) - z(2) + 1 z(3, 1, 1) - z(3, 1) + z(3) - 1 z(2, 2, 1) - z(2, 2) + z(2) - 1 z(2, 1, 2) - z(2, 1) + z(2) - 1 z(2, 1, 1, 1) - z(2, 1, 1) + z(2, 1) - z(2) + 1 total: 4 z(5) - 3 z(4) */ int main() { int X, N; for (; ~scanf("%d%d", &X, &N); ) { double ans; switch (X) { case 1: { ans = 1.0 - pow(0.5, N + 1); } break; case 2: { if (N == 1) { ans = 0.5; } else if (N == 2) { ans = riemann_zeta(2) - 1.0; } else { ans = (N - 1) * riemann_zeta(N) - (N - 2) * riemann_zeta(N - 1); } } break; default: assert(false); } printf("%.12f\n", ans); } return 0; }