結果

問題 No.1288 yuki collection
ユーザー risujirohrisujiroh
提出日時 2020-11-13 22:41:37
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2,889 ms / 5,000 ms
コード長 9,535 bytes
コンパイル時間 3,366 ms
コンパイル使用メモリ 237,504 KB
実行使用メモリ 65,836 KB
最終ジャッジ日時 2024-07-22 21:42:35
合計ジャッジ時間 32,995 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 3 ms
6,940 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 3 ms
6,944 KB
testcase_06 AC 3 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 3 ms
6,948 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 3 ms
6,944 KB
testcase_11 AC 3 ms
6,940 KB
testcase_12 AC 3 ms
6,944 KB
testcase_13 AC 668 ms
40,760 KB
testcase_14 AC 595 ms
41,208 KB
testcase_15 AC 468 ms
35,020 KB
testcase_16 AC 618 ms
35,892 KB
testcase_17 AC 646 ms
41,060 KB
testcase_18 AC 580 ms
41,192 KB
testcase_19 AC 616 ms
40,828 KB
testcase_20 AC 606 ms
42,500 KB
testcase_21 AC 404 ms
57,476 KB
testcase_22 AC 433 ms
58,672 KB
testcase_23 AC 481 ms
57,608 KB
testcase_24 AC 602 ms
41,744 KB
testcase_25 AC 658 ms
42,512 KB
testcase_26 AC 634 ms
41,824 KB
testcase_27 AC 1,560 ms
24,144 KB
testcase_28 AC 2,385 ms
34,148 KB
testcase_29 AC 1,934 ms
36,696 KB
testcase_30 AC 2,889 ms
38,876 KB
testcase_31 AC 2,753 ms
39,736 KB
testcase_32 AC 2,880 ms
38,712 KB
testcase_33 AC 324 ms
65,836 KB
testcase_34 AC 543 ms
43,668 KB
testcase_35 AC 643 ms
41,368 KB
testcase_36 AC 451 ms
40,900 KB
testcase_37 AC 490 ms
41,728 KB
testcase_38 AC 320 ms
64,504 KB
testcase_39 AC 320 ms
64,244 KB
testcase_40 AC 2,831 ms
38,804 KB
testcase_41 AC 2 ms
6,944 KB
testcase_42 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

namespace atcoder {

template <class Cap, class Cost>
struct mcf_graph {
 public:
  mcf_graph() {}
  mcf_graph(int n) : _n(n), g(n) {}

  int add_edge(int from, int to, Cap cap, Cost cost) {
    assert(0 <= from && from < _n);
    assert(0 <= to && to < _n);
    int m = int(pos.size());
    pos.push_back({from, int(g[from].size())});
    int from_id = int(g[from].size());
    int to_id = int(g[to].size());
    if (from == to) to_id++;
    g[from].push_back(_edge{to, to_id, cap, cost});
    g[to].push_back(_edge{from, from_id, 0, -cost});
    return m;
  }

  struct edge {
    int from, to;
    Cap cap, flow;
    Cost cost;
  };

  edge get_edge(int i) {
    int m = int(pos.size());
    assert(0 <= i && i < m);
    auto _e = g[pos[i].first][pos[i].second];
    auto _re = g[_e.to][_e.rev];
    return edge{
        pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
    };
  }
  std::vector<edge> edges() {
    int m = int(pos.size());
    std::vector<edge> result(m);
    for (int i = 0; i < m; i++) {
      result[i] = get_edge(i);
    }
    return result;
  }

  std::pair<Cap, Cost> flow(int s, int t) {
    return flow(s, t, std::numeric_limits<Cap>::max());
  }
  std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
    return slope(s, t, flow_limit).back();
  }
  std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
    return slope(s, t, std::numeric_limits<Cap>::max());
  }
  std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
    assert(0 <= s && s < _n);
    assert(0 <= t && t < _n);
    assert(s != t);
    // variants (C = maxcost):
    // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
    // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
    std::vector<Cost> dual(_n, 0), dist(_n);
    std::vector<int> pv(_n), pe(_n);
    std::vector<bool> vis(_n);
    auto dual_ref = [&]() {
      std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max());
      std::fill(pv.begin(), pv.end(), -1);
      std::fill(pe.begin(), pe.end(), -1);
      std::fill(vis.begin(), vis.end(), false);
      struct Q {
        Cost key;
        int to;
        bool operator<(Q r) const { return key > r.key; }
      };
      std::priority_queue<Q> que;
      dist[s] = 0;
      que.push(Q{0, s});
      while (!que.empty()) {
        int v = que.top().to;
        que.pop();
        if (vis[v]) continue;
        vis[v] = true;
        if (v == t) break;
        // dist[v] = shortest(s, v) + dual[s] - dual[v]
        // dist[v] >= 0 (all reduced cost are positive)
        // dist[v] <= (n-1)C
        for (int i = 0; i < int(g[v].size()); i++) {
          auto e = g[v][i];
          if (vis[e.to] || !e.cap) continue;
          // |-dual[e.to] + dual[v]| <= (n-1)C
          // cost <= C - -(n-1)C + 0 = nC
          Cost cost = e.cost - dual[e.to] + dual[v];
          if (dist[e.to] - dist[v] > cost) {
            dist[e.to] = dist[v] + cost;
            pv[e.to] = v;
            pe[e.to] = i;
            que.push(Q{dist[e.to], e.to});
          }
        }
      }
      if (!vis[t]) {
        return false;
      }

      for (int v = 0; v < _n; v++) {
        if (!vis[v]) continue;
        // dual[v] = dual[v] - dist[t] + dist[v]
        //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +
        //         (shortest(s, v) + dual[s] - dual[v]) = - shortest(s, t) +
        //         dual[t] + shortest(s, v) = shortest(s, v) - shortest(s, t) >=
        //         0 - (n-1)C
        dual[v] -= dist[t] - dist[v];
      }
      return true;
    };
    Cap flow = 0;
    Cost cost = 0, prev_cost_per_flow = -1;
    std::vector<std::pair<Cap, Cost>> result;
    result.push_back({flow, cost});
    while (flow < flow_limit) {
      if (!dual_ref()) break;
      Cap c = flow_limit - flow;
      for (int v = t; v != s; v = pv[v]) {
        c = std::min(c, g[pv[v]][pe[v]].cap);
      }
      for (int v = t; v != s; v = pv[v]) {
        auto& e = g[pv[v]][pe[v]];
        e.cap -= c;
        g[v][e.rev].cap += c;
      }
      Cost d = -dual[s];
      flow += c;
      cost += c * d;
      if (prev_cost_per_flow == d) {
        result.pop_back();
      }
      result.push_back({flow, cost});
      prev_cost_per_flow = d;
    }
    return result;
  }

 private:
  int _n;

  struct _edge {
    int to, rev;
    Cap cap;
    Cost cost;
  };

  std::vector<std::pair<int, int>> pos;
  std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder

template <class Cap, class Cost>
struct min_cost_b_flow {
  struct result {
    bool feasible;
    Cost cost;
    std::vector<Cap> flow;
    std::vector<Cost> dual;
  };

  min_cost_b_flow() {}
  explicit min_cost_b_flow(int n) : g(n + 2), b(n) {}

  int size() const { return std::size(b); }
  int add_edge(int src, int dst, Cap lower, Cap upper, Cost cost) {
    assert(0 <= src), assert(src < size());
    assert(0 <= dst), assert(dst < size());
    assert(lower <= upper);
    if (rev.push_back(cost < 0), rev.back()) {
      std::swap(src, dst);
      std::tie(lower, upper) = std::pair{-upper, -lower};
      cost = -cost;
    }
    b[src] -= lower;
    b[dst] += lower;
    res.cost += lower * cost;
    res.flow.push_back(lower);
    return g.add_edge(src, dst, upper - lower, cost);
  }
  void add_supply(int v, Cap x) {
    assert(0 <= v), assert(v < size());
    b[v] += x;
  }
  void add_demand(int v, Cap x) {
    assert(0 <= v), assert(v < size());
    b[v] -= x;
  }

  result flow() {
    int source = size(), sink = source + 1;
    Cap positive{}, negative{};
    for (int v = 0; v < size(); ++v)
      if (b[v] > 0) {
        g.add_edge(source, v, b[v], 0);
        positive += b[v];
      } else if (b[v] < 0) {
        g.add_edge(v, sink, -b[v], 0);
        negative += -b[v];
      }
    if (positive != negative) return {};
    auto [flow, cost] = g.flow(source, sink);
    if (flow < positive) return {};
    res.feasible = true;
    res.cost += cost;
    std::vector<std::vector<std::pair<int, Cost>>> h(size());
    for (int i = 0; i < int(std::size(res.flow)); ++i) {
      auto e = g.get_edge(i);
      if (e.flow < e.cap) h[e.from].emplace_back(e.to, e.cost);
      if (e.flow > 0) h[e.to].emplace_back(e.from, -e.cost);
      res.flow[i] += e.flow;
      if (rev[i]) res.flow[i] = -res.flow[i];
    }
    res.dual.resize(size());
    std::vector<int> que(size());
    std::iota(begin(que), end(que), 0);
    std::vector in_que(size(), true);
    for (int bg = 0; bg < int(std::size(que));) {
      int v = que[bg++];
      in_que[v] = false;
      for (auto [u, c] : h[v]) {
        if (res.dual[v] + c < res.dual[u]) {
          res.dual[u] = res.dual[v] + c;
          if (not in_que[u]) in_que[u] = true, que.push_back(u);
        }
      }
    }
    return res;
  }

 private:
  atcoder::mcf_graph<Cap, Cost> g;
  std::vector<Cap> b;
  std::vector<bool> rev;
  result res{};
};

#pragma region my_template

struct Rep {
  struct I {
    int i;
    void operator++() { ++i; }
    int operator*() const { return i; }
    bool operator!=(I o) const { return i < *o; }
  };
  const int l, r;
  Rep(int _l, int _r) : l(_l), r(_r) {}
  Rep(int n) : Rep(0, n) {}
  I begin() const { return {l}; }
  I end() const { return {r}; }
};
struct Per {
  struct I {
    int i;
    void operator++() { --i; }
    int operator*() const { return i; }
    bool operator!=(I o) const { return i > *o; }
  };
  const int l, r;
  Per(int _l, int _r) : l(_l), r(_r) {}
  Per(int n) : Per(0, n) {}
  I begin() const { return {r - 1}; }
  I end() const { return {l - 1}; }
};

template <class F>
struct Fix : private F {
  Fix(F f) : F(f) {}
  template <class... Args>
  decltype(auto) operator()(Args&&... args) const {
    return F::operator()(*this, std::forward<Args>(args)...);
  }
};

template <class T = int>
T scan() {
  T res;
  std::cin >> res;
  return res;
}

template <class T, class U = T>
bool chmin(T& a, U&& b) {
  return b < a ? a = std::forward<U>(b), true : false;
}
template <class T, class U = T>
bool chmax(T& a, U&& b) {
  return a < b ? a = std::forward<U>(b), true : false;
}

#ifndef LOCAL
#define DUMP(...) void(0)
template <int OnlineJudge, int Local>
constexpr int OjLocal = OnlineJudge;
#endif

using namespace std;

#define ALL(c) begin(c), end(c)

#pragma endregion

int main() {
  cin.tie(nullptr)->sync_with_stdio(false);
  cout << fixed << setprecision(20);
  int n = scan();
  auto s = scan<string>();
  vector<int> a(n);
  generate(ALL(a), scan<>);
  min_cost_b_flow<int, int64_t> g(2 * n + 2);
  for (int i : Rep(n)) {
    g.add_edge(2 * i, 2 * i + 1, 0, 1, -a[i]);
    if (s[i] == 'y') {
      g.add_edge(2 * n, 2 * i, 0, 1, 0);
      for (int j : Rep(i + 1, n))
        if (s[j] == 'u') g.add_edge(2 * i + 1, 2 * j, 0, 1, 0);
    } else if (s[i] == 'u') {
      for (int j : Rep(i + 1, n))
        if (s[j] == 'k') g.add_edge(2 * i + 1, 2 * j, 0, 1, 0);
    } else if (s[i] == 'k') {
      for (int j : Rep(i + 1, n))
        if (s[j] == 'i') g.add_edge(2 * i + 1, 2 * j, 0, 1, 0);
    } else if (s[i] == 'i') {
      g.add_edge(2 * i + 1, 2 * n + 1, 0, 1, 0);
    } else
      assert(false);
  }
  g.add_edge(2 * n + 1, 2 * n, 0, n, 0);
  cout << -g.flow().cost << '\n';
}
0