結果
| 問題 |
No.1288 yuki collection
|
| コンテスト | |
| ユーザー |
risujiroh
|
| 提出日時 | 2020-11-13 22:41:37 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3,357 ms / 5,000 ms |
| コード長 | 9,535 bytes |
| コンパイル時間 | 2,887 ms |
| コンパイル使用メモリ | 228,232 KB |
| 最終ジャッジ日時 | 2025-01-15 23:41:42 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 40 |
ソースコード
#include <bits/stdc++.h>
namespace atcoder {
template <class Cap, class Cost>
struct mcf_graph {
public:
mcf_graph() {}
mcf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap, cost});
g[to].push_back(_edge{from, from_id, 0, -cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{
pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result(m);
for (int i = 0; i < m; i++) {
result[i] = get_edge(i);
}
return result;
}
std::pair<Cap, Cost> flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
return slope(s, t, flow_limit).back();
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
return slope(s, t, std::numeric_limits<Cap>::max());
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
// variants (C = maxcost):
// -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
// reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
std::vector<Cost> dual(_n, 0), dist(_n);
std::vector<int> pv(_n), pe(_n);
std::vector<bool> vis(_n);
auto dual_ref = [&]() {
std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max());
std::fill(pv.begin(), pv.end(), -1);
std::fill(pe.begin(), pe.end(), -1);
std::fill(vis.begin(), vis.end(), false);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::priority_queue<Q> que;
dist[s] = 0;
que.push(Q{0, s});
while (!que.empty()) {
int v = que.top().to;
que.pop();
if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
// dist[v] = shortest(s, v) + dual[s] - dual[v]
// dist[v] >= 0 (all reduced cost are positive)
// dist[v] <= (n-1)C
for (int i = 0; i < int(g[v].size()); i++) {
auto e = g[v][i];
if (vis[e.to] || !e.cap) continue;
// |-dual[e.to] + dual[v]| <= (n-1)C
// cost <= C - -(n-1)C + 0 = nC
Cost cost = e.cost - dual[e.to] + dual[v];
if (dist[e.to] - dist[v] > cost) {
dist[e.to] = dist[v] + cost;
pv[e.to] = v;
pe[e.to] = i;
que.push(Q{dist[e.to], e.to});
}
}
}
if (!vis[t]) {
return false;
}
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
// dual[v] = dual[v] - dist[t] + dist[v]
// = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +
// (shortest(s, v) + dual[s] - dual[v]) = - shortest(s, t) +
// dual[t] + shortest(s, v) = shortest(s, v) - shortest(s, t) >=
// 0 - (n-1)C
dual[v] -= dist[t] - dist[v];
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
std::vector<std::pair<Cap, Cost>> result;
result.push_back({flow, cost});
while (flow < flow_limit) {
if (!dual_ref()) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = pv[v]) {
c = std::min(c, g[pv[v]][pe[v]].cap);
}
for (int v = t; v != s; v = pv[v]) {
auto& e = g[pv[v]][pe[v]];
e.cap -= c;
g[v][e.rev].cap += c;
}
Cost d = -dual[s];
flow += c;
cost += c * d;
if (prev_cost_per_flow == d) {
result.pop_back();
}
result.push_back({flow, cost});
prev_cost_per_flow = d;
}
return result;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
template <class Cap, class Cost>
struct min_cost_b_flow {
struct result {
bool feasible;
Cost cost;
std::vector<Cap> flow;
std::vector<Cost> dual;
};
min_cost_b_flow() {}
explicit min_cost_b_flow(int n) : g(n + 2), b(n) {}
int size() const { return std::size(b); }
int add_edge(int src, int dst, Cap lower, Cap upper, Cost cost) {
assert(0 <= src), assert(src < size());
assert(0 <= dst), assert(dst < size());
assert(lower <= upper);
if (rev.push_back(cost < 0), rev.back()) {
std::swap(src, dst);
std::tie(lower, upper) = std::pair{-upper, -lower};
cost = -cost;
}
b[src] -= lower;
b[dst] += lower;
res.cost += lower * cost;
res.flow.push_back(lower);
return g.add_edge(src, dst, upper - lower, cost);
}
void add_supply(int v, Cap x) {
assert(0 <= v), assert(v < size());
b[v] += x;
}
void add_demand(int v, Cap x) {
assert(0 <= v), assert(v < size());
b[v] -= x;
}
result flow() {
int source = size(), sink = source + 1;
Cap positive{}, negative{};
for (int v = 0; v < size(); ++v)
if (b[v] > 0) {
g.add_edge(source, v, b[v], 0);
positive += b[v];
} else if (b[v] < 0) {
g.add_edge(v, sink, -b[v], 0);
negative += -b[v];
}
if (positive != negative) return {};
auto [flow, cost] = g.flow(source, sink);
if (flow < positive) return {};
res.feasible = true;
res.cost += cost;
std::vector<std::vector<std::pair<int, Cost>>> h(size());
for (int i = 0; i < int(std::size(res.flow)); ++i) {
auto e = g.get_edge(i);
if (e.flow < e.cap) h[e.from].emplace_back(e.to, e.cost);
if (e.flow > 0) h[e.to].emplace_back(e.from, -e.cost);
res.flow[i] += e.flow;
if (rev[i]) res.flow[i] = -res.flow[i];
}
res.dual.resize(size());
std::vector<int> que(size());
std::iota(begin(que), end(que), 0);
std::vector in_que(size(), true);
for (int bg = 0; bg < int(std::size(que));) {
int v = que[bg++];
in_que[v] = false;
for (auto [u, c] : h[v]) {
if (res.dual[v] + c < res.dual[u]) {
res.dual[u] = res.dual[v] + c;
if (not in_que[u]) in_que[u] = true, que.push_back(u);
}
}
}
return res;
}
private:
atcoder::mcf_graph<Cap, Cost> g;
std::vector<Cap> b;
std::vector<bool> rev;
result res{};
};
#pragma region my_template
struct Rep {
struct I {
int i;
void operator++() { ++i; }
int operator*() const { return i; }
bool operator!=(I o) const { return i < *o; }
};
const int l, r;
Rep(int _l, int _r) : l(_l), r(_r) {}
Rep(int n) : Rep(0, n) {}
I begin() const { return {l}; }
I end() const { return {r}; }
};
struct Per {
struct I {
int i;
void operator++() { --i; }
int operator*() const { return i; }
bool operator!=(I o) const { return i > *o; }
};
const int l, r;
Per(int _l, int _r) : l(_l), r(_r) {}
Per(int n) : Per(0, n) {}
I begin() const { return {r - 1}; }
I end() const { return {l - 1}; }
};
template <class F>
struct Fix : private F {
Fix(F f) : F(f) {}
template <class... Args>
decltype(auto) operator()(Args&&... args) const {
return F::operator()(*this, std::forward<Args>(args)...);
}
};
template <class T = int>
T scan() {
T res;
std::cin >> res;
return res;
}
template <class T, class U = T>
bool chmin(T& a, U&& b) {
return b < a ? a = std::forward<U>(b), true : false;
}
template <class T, class U = T>
bool chmax(T& a, U&& b) {
return a < b ? a = std::forward<U>(b), true : false;
}
#ifndef LOCAL
#define DUMP(...) void(0)
template <int OnlineJudge, int Local>
constexpr int OjLocal = OnlineJudge;
#endif
using namespace std;
#define ALL(c) begin(c), end(c)
#pragma endregion
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
cout << fixed << setprecision(20);
int n = scan();
auto s = scan<string>();
vector<int> a(n);
generate(ALL(a), scan<>);
min_cost_b_flow<int, int64_t> g(2 * n + 2);
for (int i : Rep(n)) {
g.add_edge(2 * i, 2 * i + 1, 0, 1, -a[i]);
if (s[i] == 'y') {
g.add_edge(2 * n, 2 * i, 0, 1, 0);
for (int j : Rep(i + 1, n))
if (s[j] == 'u') g.add_edge(2 * i + 1, 2 * j, 0, 1, 0);
} else if (s[i] == 'u') {
for (int j : Rep(i + 1, n))
if (s[j] == 'k') g.add_edge(2 * i + 1, 2 * j, 0, 1, 0);
} else if (s[i] == 'k') {
for (int j : Rep(i + 1, n))
if (s[j] == 'i') g.add_edge(2 * i + 1, 2 * j, 0, 1, 0);
} else if (s[i] == 'i') {
g.add_edge(2 * i + 1, 2 * n + 1, 0, 1, 0);
} else
assert(false);
}
g.add_edge(2 * n + 1, 2 * n, 0, n, 0);
cout << -g.flow().cost << '\n';
}
risujiroh