結果
問題 | No.1285 ゴミ捨て |
ユーザー | こまる |
提出日時 | 2020-11-16 17:32:38 |
言語 | Haskell (9.8.2) |
結果 |
AC
|
実行時間 | 24 ms / 2,000 ms |
コード長 | 5,698 bytes |
コンパイル時間 | 12,598 ms |
コンパイル使用メモリ | 252,620 KB |
実行使用メモリ | 12,416 KB |
最終ジャッジ日時 | 2024-05-06 14:38:05 |
合計ジャッジ時間 | 13,879 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,812 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 1 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 23 ms
12,288 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 13 ms
10,112 KB |
testcase_10 | AC | 20 ms
12,288 KB |
testcase_11 | AC | 19 ms
12,032 KB |
testcase_12 | AC | 15 ms
10,368 KB |
testcase_13 | AC | 14 ms
10,496 KB |
testcase_14 | AC | 22 ms
12,288 KB |
testcase_15 | AC | 16 ms
10,624 KB |
testcase_16 | AC | 6 ms
6,940 KB |
testcase_17 | AC | 7 ms
6,940 KB |
testcase_18 | AC | 6 ms
6,940 KB |
testcase_19 | AC | 11 ms
9,344 KB |
testcase_20 | AC | 5 ms
6,940 KB |
testcase_21 | AC | 7 ms
7,552 KB |
testcase_22 | AC | 23 ms
12,416 KB |
testcase_23 | AC | 24 ms
12,416 KB |
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default [1 of 2] Compiling Main ( Main.hs, Main.o ) [2 of 2] Linking a.out
ソースコード
{-# LANGUAGE BangPatterns #-} {-# LANGUAGE FlexibleInstances #-} module Main where import Control.Monad import Control.Monad.Cont import Control.Monad.Fix import Control.Monad.ST import Control.Monad.State import qualified Data.ByteString.Char8 as BSC8 import Data.Char import Data.Coerce import Data.IORef import qualified Data.Vector.Fusion.Stream.Monadic as VFSM import qualified Data.Vector.Generic as VG import qualified Data.Vector.Generic.Mutable as VGM import qualified Data.Vector.Unboxed as VU main :: IO () main = do n <- readLn :: IO Int a <- quickSort <$> parseN1 n check <- newIORef True rep (n - 1) $ \i -> when (a VU.! i == a VU.! (i + 1) - 1) $ writeIORef check False b <- readIORef check if b then putStrLn "1" else putStrLn "2" type CParser a = StateT BSC8.ByteString Maybe a runCParser :: CParser a -> BSC8.ByteString -> Maybe (a, BSC8.ByteString) runCParser = runStateT {-# INLINE runCParser #-} int :: CParser Int int = coerce $ BSC8.readInt . BSC8.dropWhile isSpace {-# INLINE int #-} parseN1 :: Int -> IO (VU.Vector Int) parseN1 n = VU.unfoldrN n (runCParser int) <$> BSC8.getContents {-# INLINE parseN1 #-} quickSort :: (Ord a, VG.Vector v a) => v a -> v a quickSort = quickSortBy compare quickSortBy :: VG.Vector v a => (a -> a -> Ordering) -> v a -> v a quickSortBy cmp = VG.modify $ fix $ \loop vec -> when (VGM.length vec > 1) $ do pivot <- getMedian3Pivot cmp vec cut <- pivotPartition cmp vec pivot loop (VGM.unsafeDrop cut vec) loop (VGM.unsafeTake cut vec) {-# INLINE quickSortBy #-} pivotPartition :: (VGM.MVector mv a) => (a -> a -> Ordering) -> mv s a -> a -> ST s Int pivotPartition cmp vec pivot = fix `flip` 0 `flip` VGM.length vec $ \loop !l !r -> do !l' <- flip fix l $ \loopL !i -> do x <- VGM.unsafeRead vec i case cmp x pivot of LT -> loopL (i + 1) _ -> return i !r' <- flip fix (r - 1) $ \loopR !i -> do x <- VGM.unsafeRead vec i case cmp pivot x of LT -> loopR (i - 1) _ -> return i if l' < r' then do VGM.unsafeSwap vec l' r' loop (l' + 1) r' else return l' {-# INLINE pivotPartition #-} getMedian3Pivot :: (VGM.MVector mv a) => (a -> a -> Ordering) -> mv s a -> ST s a getMedian3Pivot cmp vec = median cmp <$> VGM.unsafeRead vec 0 <*> VGM.unsafeRead vec (VGM.length vec `quot` 2) <*> VGM.unsafeRead vec (VGM.length vec - 1) {-# INLINE getMedian3Pivot #-} median :: (a -> a -> Ordering) -> a -> a -> a -> a median cmp x y z = case cmp x y of LT -> case cmp y z of LT -> y _ -> case cmp x z of LT -> z _ -> x _ -> case cmp x z of LT -> x _ -> case cmp y z of LT -> z _ -> y {-# INLINE median #-} -- | l -> x -> r, +d stream :: Monad m => Int -> Int -> Int -> VFSM.Stream m Int stream !l !r !d = VFSM.Stream step l where step x | x <= r = return $ VFSM.Yield x (x + d) | otherwise = return VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] stream #-} -- | 0 <= x < n, interval = 1 rep :: Monad m => Int -> (Int -> m ()) -> m () rep n = flip VFSM.mapM_ (stream 0 (n - 1) 1) {-# INLINE rep #-} -- | 0 <= x <= n, interval = 1 rep' :: Monad m => Int -> (Int -> m ()) -> m () rep' n = flip VFSM.mapM_ (stream 0 n 1) {-# INLINE rep' #-} -- | 1 <= x < n, interval = 1 rep1 :: Monad m => Int -> (Int -> m ()) -> m () rep1 n = flip VFSM.mapM_ (stream 1 (n - 1) 1) {-# INLINE rep1 #-} -- | 1 <= x <= n, interval = 1 rep1' :: Monad m => Int -> (Int -> m ()) -> m () rep1' n = flip VFSM.mapM_ (stream 1 n 1) {-# INLINE rep1' #-} -- | l <= x <= r, interval = d for :: Monad m => Int -> Int -> Int -> (Int -> m ()) -> m () for l r d = flip VFSM.mapM_ (stream l r d) {-# INLINE for #-} -- | r -> x -> l, -d streamR :: Monad m => Int -> Int -> Int -> VFSM.Stream m Int streamR !r !l !d = VFSM.Stream step r where step x | x >= l = return $ VFSM.Yield x (x - d) | otherwise = return VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] streamR #-} -- | n > x >= 0, interval = -1 rev :: Monad m => Int -> (Int -> m ()) -> m () rev n = flip VFSM.mapM_ (streamR (n - 1) 0 1) {-# INLINE rev #-} -- | n >= x >= 0, interval = -1 rev' :: Monad m => Int -> (Int -> m ()) -> m () rev' n = flip VFSM.mapM_ (streamR n 0 1) {-# INLINE rev' #-} -- | n > x >= 1, interval = -1 rev1 :: Monad m => Int -> (Int -> m ()) -> m () rev1 n = flip VFSM.mapM_ (streamR (n - 1) 1 1) {-# INLINE rev1 #-} -- | n >= x >= 1, interval = -1 rev1' :: Monad m => Int -> (Int -> m ()) -> m () rev1' n = flip VFSM.mapM_ (streamR n 1 1) {-# INLINE rev1' #-} -- | r >= x >= l, interval = -d forR :: Monad m => Int -> Int -> Int -> (Int -> m ()) -> m () forR r l d = flip VFSM.mapM_ (streamR r l d) {-# INLINE forR #-} -- | for (int i = l; f(i, p) <= r ; g(i, d)) streamG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int streamG l r f p g d = VFSM.Stream step l where step x | f x p <= r = return $ VFSM.Yield x (g x d) | otherwise = return VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] streamG #-} forG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m () forG l r f p g d = flip VFSM.mapM_ (streamG l r f p g d) {-# INLINE forG #-} withBreakIO :: ((r -> ContT r IO b) -> ContT r IO r) -> IO r withBreakIO = flip runContT pure . callCC {-# INLINE withBreakIO #-} withBreakST :: ((r -> ContT r (ST s) b) -> ContT r (ST s) r) -> (ST s) r withBreakST = flip runContT pure . callCC {-# INLINE withBreakST #-}