結果

問題 No.1292 パタパタ三角形
ユーザー yuruhiyayuruhiya
提出日時 2020-11-20 22:30:43
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 99 ms / 2,000 ms
コード長 28,544 bytes
コンパイル時間 3,834 ms
コンパイル使用メモリ 207,964 KB
最終ジャッジ日時 2025-01-16 02:40:07
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 2 "/home/yuruhiya/programming/library/template/template.cpp"
#include <bits/stdc++.h>
#line 6 "/home/yuruhiya/programming/library/template/constants.cpp"
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); ++i)
#define FOR(i, m, n) for (int i = (m); i < (n); ++i)
#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)
#define rfor(i, m, n) for (int i = (m); i >= (n); --i)
#define unless(c) if (!(c))
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)
using namespace std;
using ll = long long;
using LD = long double;
using VB = vector<bool>;
using VVB = vector<VB>;
using VI = vector<int>;
using VVI = vector<VI>;
using VL = vector<ll>;
using VVL = vector<VL>;
using VS = vector<string>;
using VD = vector<LD>;
using PII = pair<int, int>;
using VP = vector<PII>;
using PLL = pair<ll, ll>;
using VPL = vector<PLL>;
template <class T> using PQ = priority_queue<T>;
template <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;
constexpr int inf = 1e9;
constexpr long long inf_ll = 1e18, MOD = 1000000007;
constexpr long double PI = 3.14159265358979323846, EPS = 1e-12;
#line 7 "/home/yuruhiya/programming/library/template/Input.cpp"
using namespace std;
#ifdef _WIN32
#define getchar_unlocked _getchar_nolock
#define putchar_unlocked _putchar_nolock
#define fwrite_unlocked fwrite
#define fflush_unlocked fflush
#endif
class Input {
static int gc() {
return getchar_unlocked();
}
template <class T> static void i(T& v) {
cin >> v;
}
static void i(char& v) {
while (isspace(v = gc()))
;
}
static void i(bool& v) {
v = in<char>() != '0';
}
static void i(string& v) {
v.clear();
char c;
for (i(c); !isspace(c); c = gc()) v += c;
}
static void i(int& v) {
bool neg = false;
v = 0;
char c;
i(c);
if (c == '-') {
neg = true;
c = gc();
}
for (; isdigit(c); c = gc()) v = v * 10 + (c - '0');
if (neg) v = -v;
}
static void i(long long& v) {
bool neg = false;
v = 0;
char c;
i(c);
if (c == '-') {
neg = true;
c = gc();
}
for (; isdigit(c); c = gc()) v = v * 10 + (c - '0');
if (neg) v = -v;
}
static void i(double& v) {
double dp = 1;
bool neg = false, adp = false;
v = 0;
char c;
i(c);
if (c == '-') {
neg = true;
c = gc();
}
for (; isdigit(c) || c == '.'; c = gc()) {
if (c == '.')
adp = true;
else if (adp)
v += (c - '0') * (dp *= 0.1);
else
v = v * 10 + (c - '0');
}
if (neg) v = -v;
}
static void i(long double& v) {
long double dp = 1;
bool neg = false, adp = false;
v = 0;
char c;
i(c);
if (c == '-') {
neg = true;
c = gc();
}
for (; isdigit(c) || c == '.'; c = gc()) {
if (c == '.')
adp = true;
else if (adp)
v += (c - '0') * (dp *= 0.1);
else
v = v * 10 + (c - '0');
}
if (neg) v = -v;
}
template <class T, class U> static void i(pair<T, U>& v) {
i(v.first);
i(v.second);
}
template <class T> static void i(vector<T>& v) {
for (auto& e : v) i(e);
}
template <size_t N = 0, class T> static void input_tuple(T& v) {
if constexpr (N < tuple_size_v<T>) {
i(get<N>(v));
input_tuple<N + 1>(v);
}
}
template <class... T> static void i(tuple<T...>& v) {
input_tuple(v);
}
struct InputV {
int n, m;
InputV(int _n) : n(_n), m(0) {}
InputV(const pair<int, int>& nm) : n(nm.first), m(nm.second) {}
template <class T> operator vector<T>() {
vector<T> v(n);
i(v);
return v;
}
template <class T> operator vector<vector<T>>() {
vector<vector<T>> v(n, vector<T>(m));
i(v);
return v;
}
};
public:
static string read_line() {
string v;
char c;
for (i(c); c != '\n' && c != '\0'; c = gc()) v += c;
return v;
}
template <class T> static T in() {
T v;
i(v);
return v;
}
template <class T> operator T() const {
return in<T>();
}
int operator--(int) const {
return in<int>() - 1;
}
InputV operator[](int n) const {
return InputV(n);
}
InputV operator[](const pair<int, int>& n) const {
return InputV(n);
}
void operator()() const {}
template <class H, class... T> void operator()(H&& h, T&&... t) const {
i(h);
operator()(forward<T>(t)...);
}
private:
template <template <class...> class, class...> struct Multiple;
template <template <class...> class V, class Head, class... Tail>
struct Multiple<V, Head, Tail...> {
template <class... Args> using vec = V<vector<Head>, Args...>;
using type = typename Multiple<vec, Tail...>::type;
};
template <template <class...> class V> struct Multiple<V> { using type = V<>; };
template <class... T> using multiple_t = typename Multiple<tuple, T...>::type;
template <size_t N = 0, class T> void in_multiple(T& t) const {
if constexpr (N < tuple_size_v<T>) {
auto& vec = get<N>(t);
using V = typename remove_reference_t<decltype(vec)>::value_type;
vec.push_back(in<V>());
in_multiple<N + 1>(t);
}
}
public:
template <class... T> auto multiple(int H) const {
multiple_t<T...> res;
while (H--) in_multiple(res);
return res;
}
} in;
#define input(T) Input::in<T>()
#define INT input(int)
#define LL input(long long)
#define STR input(string)
#define inputs(T, ...) \
T __VA_ARGS__; \
in(__VA_ARGS__)
#define ini(...) inputs(int, __VA_ARGS__)
#define inl(...) inputs(long long, __VA_ARGS__)
#define ins(...) inputs(string, __VA_ARGS__)
#line 6 "/home/yuruhiya/programming/library/template/Output.cpp"
#include <charconv>
#line 9 "/home/yuruhiya/programming/library/template/Output.cpp"
using namespace std;
struct BoolStr {
const char *t, *f;
BoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}
} Yes("Yes", "No"), yes("yes", "no"), YES("YES", "NO"), Int("1", "0");
struct DivStr {
const char *d, *l;
DivStr(const char* _d, const char* _l) : d(_d), l(_l) {}
} spc(" ", "\n"), no_spc("", "\n"), end_line("\n", "\n"), comma(",", "\n"),
no_endl(" ", "");
class Output {
BoolStr B{Yes};
DivStr D{spc};
public:
void put(int v) const {
char buf[12]{};
if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {
fwrite(buf, sizeof(char), ptr - buf, stdout);
} else {
assert(false);
}
}
void put(long long v) const {
char buf[21]{};
if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {
fwrite(buf, sizeof(char), ptr - buf, stdout);
} else {
assert(false);
}
}
void put(bool v) const {
put(v ? B.t : B.f);
}
void put(char v) const {
putchar_unlocked(v);
}
void put(const char* v) const {
fwrite_unlocked(v, 1, strlen(v), stdout);
}
void put(double v) const {
printf("%.20f", v);
}
void put(long double v) const {
printf("%.20Lf", v);
}
template <class T> void put(const T& v) const {
cout << v;
}
template <class T, class U> void put(const pair<T, U>& v) const {
put(v.first);
put(D.d);
put(v.second);
}
template <class It> void put_range(const It& begin, const It& end) const {
for (It i = begin; i != end; ++i) {
if (i != begin) put(D.d);
put(*i);
}
}
template <class T> void put(const vector<T>& v) const {
put_range(v.begin(), v.end());
}
template <class T, size_t N> void put(const array<T, N>& v) const {
put_range(v.begin(), v.end());
}
template <class T> void put(const vector<vector<T>>& v) const {
for (size_t i = 0; i < v.size(); ++i) {
if (i) put(D.l);
put(v[i]);
}
}
Output() = default;
Output(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}
Output& operator()() {
put(D.l);
return *this;
}
template <class H> Output& operator()(H&& h) {
put(h);
put(D.l);
return *this;
}
template <class H, class... T> Output& operator()(H&& h, T&&... t) {
put(h);
put(D.d);
return operator()(forward<T>(t)...);
}
template <class It> Output& range(const It& begin, const It& end) {
put_range(begin, end);
put(D.l);
return *this;
}
template <class T> Output& range(const T& a) {
range(a.begin(), a.end());
return *this;
}
template <class... T> void exit(T&&... t) {
operator()(forward<T>(t)...);
std::exit(EXIT_SUCCESS);
}
Output& flush() {
fflush_unlocked(stdout);
return *this;
}
Output& set(const BoolStr& b) {
B = b;
return *this;
}
Output& set(const DivStr& d) {
D = d;
return *this;
}
Output& set(const char* t, const char* f) {
B = BoolStr(t, f);
return *this;
}
} out;
#line 3 "/home/yuruhiya/programming/library/template/Step.cpp"
using namespace std;
template <class T> struct Step {
class It {
T a, b, c;
public:
constexpr It() : a(T()), b(T()), c(T()) {}
constexpr It(T _b, T _c, T _s) : a(_b), b(_c), c(_s) {}
constexpr It& operator++() {
--b;
a += c;
return *this;
}
constexpr It operator++(int) {
It tmp = *this;
--b;
a += c;
return tmp;
}
constexpr const T& operator*() const {
return a;
}
constexpr const T* operator->() const {
return &a;
}
constexpr bool operator==(const It& i) const {
return b == i.b;
}
constexpr bool operator!=(const It& i) const {
return !(b == i.b);
}
constexpr T start() const {
return a;
}
constexpr T size() const {
return b;
}
constexpr T step() const {
return c;
}
};
constexpr Step(T b, T c, T s) : be(b, c, s) {}
constexpr It begin() const {
return be;
}
constexpr It end() const {
return en;
}
constexpr T start() const {
return be.start();
}
constexpr T size() const {
return be.size();
}
constexpr T step() const {
return be.step();
}
constexpr T sum() const {
return start() * size() + step() * (size() * (size() - 1) / 2);
}
operator vector<T>() const {
return to_a();
}
auto to_a() const {
vector<T> res;
res.reserve(size());
for (auto i : *this) {
res.push_back(i);
}
return res;
}
using value_type = T;
using iterator = It;
private:
It be, en;
};
template <class T> constexpr auto step(T a) {
return Step<T>(0, a, 1);
}
template <class T> constexpr auto step(T a, T b) {
return Step<T>(a, b - a, 1);
}
template <class T> constexpr auto step(T a, T b, T c) {
return Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);
}
#line 8 "/home/yuruhiya/programming/library/template/Ruby.cpp"
using namespace std;
template <class F> struct Callable {
F func;
Callable(const F& f) : func(f) {}
};
template <class T, class F> auto operator|(const T& v, const Callable<F>& c) {
return c.func(v);
}
struct Sort_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
sort(begin(v), end(v), f);
return v;
});
}
template <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {
sort(begin(v), end(v));
return v;
}
} Sort;
struct SortBy_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
sort(begin(v), end(v),
[&](const auto& i, const auto& j) { return f(i) < f(j); });
return v;
});
}
} SortBy;
struct RSort_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
sort(rbegin(v), rend(v), f);
return v;
});
}
template <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {
sort(rbegin(v), rend(v));
return v;
}
} RSort;
struct RSortBy_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
sort(begin(v), end(v),
[&](const auto& i, const auto& j) { return f(i) > f(j); });
return v;
});
}
} RSortBy;
struct Reverse_impl {
template <class T> friend auto operator|(T v, const Reverse_impl& c) {
reverse(begin(v), end(v));
return v;
}
} Reverse;
struct Unique_impl {
template <class T> friend auto operator|(T v, const Unique_impl& c) {
v.erase(unique(begin(v), end(v), end(v)));
return v;
}
} Unique;
struct Uniq_impl {
template <class T> friend auto operator|(T v, const Uniq_impl& c) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
return v;
}
} Uniq;
struct Rotate_impl {
auto operator()(int&& left) {
return Callable([&](auto v) {
int s = static_cast<int>(size(v));
assert(-s <= left && left <= s);
if (0 <= left) {
rotate(begin(v), begin(v) + left, end(v));
} else {
rotate(begin(v), end(v) + left, end(v));
}
return v;
});
}
} Rotate;
struct Max_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) { return *max_element(begin(v), end(v), f); });
}
template <class T> friend auto operator|(T v, const Max_impl& c) {
return *max_element(begin(v), end(v));
}
} Max;
struct Min_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) { return *min_element(begin(v), end(v), f); });
}
template <class T> friend auto operator|(T v, const Min_impl& c) {
return *min_element(begin(v), end(v));
}
} Min;
struct MaxPos_impl {
template <class T> friend auto operator|(T v, const MaxPos_impl& c) {
return max_element(begin(v), end(v)) - begin(v);
}
} MaxPos;
struct MinPos_impl {
template <class T> friend auto operator|(T v, const MinPos_impl& c) {
return min_element(begin(v), end(v)) - begin(v);
}
} MinPos;
struct MaxBy_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
auto max_it = begin(v);
auto max_val = f(*max_it);
for (auto it = next(begin(v)); it != end(v); ++it) {
if (auto val = f(*it); max_val < val) {
max_it = it;
max_val = val;
}
}
return *max_it;
});
}
} MaxBy;
struct MinBy_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
auto min_it = begin(v);
auto min_val = f(*min_it);
for (auto it = next(begin(v)); it != end(v); ++it) {
if (auto val = f(*it); min_val > val) {
min_it = it;
min_val = val;
}
}
return *min_it;
});
}
} MinBy;
struct MaxOf_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
auto max_val = f(*begin(v));
for (auto it = next(begin(v)); it != end(v); ++it) {
if (auto val = f(*it); max_val < val) {
max_val = val;
}
}
return max_val;
});
}
} MaxOf;
struct MinOf_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
auto min_val = f(*begin(v));
for (auto it = next(begin(v)); it != end(v); ++it) {
if (auto val = f(*it); min_val > val) {
min_val = val;
}
}
return min_val;
});
}
} MinOf;
struct Count_impl {
template <class V> auto operator()(const V& val) {
return Callable([&](auto v) { return count(begin(v), end(v), val); });
}
} Count;
struct CountIf_impl {
template <class F> auto operator()(const F& f) {
return Callable([&](auto v) { return count_if(begin(v), end(v), f); });
}
} CountIf;
struct Index_impl {
template <class V> auto operator()(const V& val) {
return Callable([&](auto v) -> optional<int> {
auto res = find(begin(v), end(v), val);
return res != end(v) ? optional(res - begin(v)) : nullopt;
});
}
} Index;
struct IndexIf_impl {
template <class F> auto operator()(const F& f) {
return Callable([&](auto v) -> optional<int> {
auto res = find_if(begin(v), end(v), f);
return res != end(v) ? optional(res - begin(v)) : nullopt;
});
}
} IndexIf;
struct FindIf_impl {
template <class F> auto operator()(const F& f) {
return Callable([&](auto v) -> optional<typename decltype(v)::value_type> {
auto res = find_if(begin(v), end(v), f);
return res != end(v) ? optional(*res) : nullopt;
});
}
} FindIf;
struct Sum_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
return accumulate(next(begin(v)), end(v), f(*begin(v)),
[&](const auto& a, const auto& b) { return a + f(b); });
});
}
template <class T> friend auto operator|(T v, const Sum_impl& c) {
return accumulate(begin(v), end(v), typename T::value_type{});
}
} Sum;
struct Includes {
template <class V> auto operator()(const V& val) {
return Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });
}
} Includes;
struct IncludesIf_impl {
template <class F> auto operator()(const F& f) {
return Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });
}
} IncludesIf;
struct RemoveIf_impl {
template <class F> auto operator()(const F& f) {
return Callable([&](auto v) {
v.erase(remove_if(begin(v), end(v), f), end(v));
return v;
});
}
} RemoveIf;
struct Each_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
for (const auto& i : v) {
f(i);
}
});
}
} Each;
struct Select_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
using value_type = typename decltype(v)::value_type;
vector<value_type> res;
for (const auto& i : v) {
if (f(i)) res.push_back(i);
}
return res;
});
}
} Select;
struct Map_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
using result_type = invoke_result_t<F, typename decltype(v)::value_type>;
vector<result_type> res;
res.reserve(size(v));
for (const auto& i : v) {
res.push_back(f(i));
}
return res;
});
}
} Map;
struct Indexed_impl {
template <class T> friend auto operator|(const T& v, Indexed_impl& c) {
using value_type = typename T::value_type;
vector<pair<value_type, int>> res;
res.reserve(size(v));
int index = 0;
for (const auto& i : v) {
res.emplace_back(i, index++);
}
return res;
}
} Indexed;
struct AllOf_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
for (const auto& i : v) {
if (!f(i)) return false;
}
return true;
});
}
} AllOf;
struct AnyOf_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
for (const auto& i : v) {
if (f(i)) return true;
}
return false;
});
}
} AnyOf;
struct NoneOf_impl {
template <class F> auto operator()(F&& f) {
return Callable([&](auto v) {
for (const auto& i : v) {
if (f(i)) return false;
}
return true;
});
}
} NoneOf;
struct Tally_impl {
template <class F> auto operator()(size_t max_val) {
return Callable([&](auto v) {
vector<size_t> res(max_val);
for (const auto& i : v) {
res[static_cast<size_t>(i)]++;
}
return res;
});
}
template <class T, class value_type = typename T::value_type>
friend auto operator|(const T& v, Tally_impl& c) {
map<value_type, size_t> res;
for (const auto& i : v) {
res[i]++;
}
return res;
}
} Tally;
template <class T> auto operator*(const vector<T>& a, size_t n) {
T res;
for (size_t i = 0; i < n; ++i) {
res.insert(res.end(), a.begin(), a.end());
}
return res;
}
auto operator*(string a, size_t n) {
string res;
for (size_t i = 0; i < n; ++i) {
res += a;
}
return res;
}
template <class T, class U> auto& operator<<(vector<T>& a, const U& b) {
a.insert(a.end(), all(b));
return a;
}
template <class T> auto& operator<<(string& a, const T& b) {
a.insert(a.end(), all(b));
return a;
}
template <class T, class U> auto operator+(vector<T> a, const U& b) {
a << b;
return a;
}
template <class T> auto operator+(string a, const T& b) {
a << b;
return a;
}
#line 6 "/home/yuruhiya/programming/library/template/functions.cpp"
using namespace std;
template <class T> int sz(const T& v) {
return v.size();
}
template <class T, class U> int Lower(const T& a, const U& v) {
return lower_bound(all(a), v) - a.begin();
}
template <class T, class U> int Upper(const T& a, const U& v) {
return upper_bound(all(a), v) - a.begin();
}
template <class T> auto Slice(const T& v, size_t i, size_t len) {
return i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();
}
template <class T> T Ceil(T n, T m) {
return (n + m - 1) / m;
}
template <class T> T Ceil2(T n, T m) {
return Ceil(n, m) * m;
}
template <class T> T Tri(T n) {
return (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);
}
template <class T> T nC2(T n) {
return (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);
}
template <class T> T Mid(const T& l, const T& r) {
return l + (r - l) / 2;
}
template <class T> bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T> bool chmin(T& a, const T& b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T> bool inRange(const T& v, const T& min, const T& max) {
return min <= v && v < max;
}
template <class T> bool isSquere(T n) {
T s = sqrt(n);
return s * s == n || (s + 1) * (s + 1) == n;
}
template <class T = long long> T BIT(int b) {
return T(1) << b;
}
template <class T, class U = typename T::value_type> U Gcdv(const T& v) {
return accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);
}
template <class T, class U = typename T::value_type> U Lcmv(const T& v) {
return accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);
}
template <class T> T Pow(T a, T n) {
T r = 1;
while (n > 0) {
if (n & 1) r *= a;
a *= a;
n /= 2;
}
return r;
}
template <class T> T Powmod(T a, T n, T m = MOD) {
T r = 1;
while (n > 0) {
if (n & 1)
r = r * a % m, n--;
else
a = a * a % m, n /= 2;
}
return r;
}
namespace internal {
template <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {
if constexpr (N == 1) {
return vector(sizes[0], init);
} else {
int size = sizes[N - 1];
sizes.pop_back();
return vector(size, make_vector<T, N - 1>(sizes, init));
}
}
} // namespace internal
template <class T, size_t N>
auto make_vector(const int (&sizes)[N], const T& init = T()) {
vector s(rbegin(sizes), rend(sizes));
return internal::make_vector<T, N>(s, init);
}
#line 9 "/home/yuruhiya/programming/library/template/template.cpp"
#if __has_include(<library/dump.hpp>)
#include <library/dump.hpp>
#define LOCAL
#else
#define dump(...) ((void)0)
#endif
template <class T> constexpr T oj_local(const T& oj, const T& local) {
#ifndef LOCAL
return oj;
#else
return local;
#endif
}
#line 5 "/home/yuruhiya/programming/library/Utility/Point.cpp"
using namespace std;
struct Point {
static int H, W;
static const vector<Point> d;
static void set_range(int _H, int _W) {
H = _H;
W = _W;
}
static constexpr Point zero() {
return {0, 0};
}
static constexpr Point one() {
return {1, 1};
}
int x, y;
constexpr Point() : x(0), y(0) {}
constexpr Point(int _x, int _y) : x(_x), y(_y) {}
constexpr Point(const pair<int, int>& xy) : x(xy.first), y(xy.second) {}
Point(int n) : x(n % W), y(n / W) {}
constexpr Point operator+() const {
return *this;
}
constexpr Point operator-() const {
return {-x, -y};
}
constexpr Point operator+(const Point& p) const {
return Point(*this) += p;
}
constexpr Point operator-(const Point& p) const {
return Point(*this) -= p;
}
constexpr Point operator*(const Point& p) const {
return Point(*this) *= p;
}
constexpr Point operator/(const Point& p) const {
return Point(*this) /= p;
}
constexpr Point operator%(const Point& p) const {
return Point(*this) %= p;
}
constexpr Point operator+(int n) const {
return Point(*this) += n;
}
constexpr Point operator-(int n) const {
return Point(*this) -= n;
}
constexpr Point operator*(int n) const {
return Point(*this) *= n;
}
constexpr Point operator/(int n) const {
return Point(*this) /= n;
}
constexpr Point operator%(int n) const {
return Point(*this) %= n;
}
constexpr Point& operator+=(const Point& p) {
x += p.x;
y += p.y;
return *this;
}
constexpr Point& operator-=(const Point& p) {
x -= p.x;
y -= p.y;
return *this;
}
constexpr Point& operator*=(const Point& p) {
x *= p.x;
y *= p.y;
return *this;
}
constexpr Point& operator/=(const Point& p) {
x /= p.x;
y /= p.y;
return *this;
}
constexpr Point& operator%=(const Point& p) {
x %= p.x;
y %= p.y;
return *this;
}
constexpr Point& operator+=(int n) {
x += n;
y += n;
return *this;
}
constexpr Point& operator-=(int n) {
x -= n;
y -= n;
return *this;
}
constexpr Point& operator*=(int n) {
x *= n;
y *= n;
return *this;
}
constexpr Point& operator/=(int n) {
x /= n;
y /= n;
return *this;
}
constexpr Point& operator%=(int n) {
x %= n;
y %= n;
return *this;
}
constexpr bool operator==(const Point& p) const {
return x == p.x && y == p.y;
}
constexpr bool operator!=(const Point& p) const {
return x != p.x || y != p.y;
}
bool operator<(const Point& p) const {
return to_i() < p.to_i();
}
bool operator<=(const Point& p) const {
return to_i() <= p.to_i();
}
bool operator>(const Point& p) const {
return to_i() > p.to_i();
}
bool operator>=(const Point& p) const {
return to_i() >= p.to_i();
}
constexpr int operator[](int i) const {
return i == 0 ? x : i == 1 ? y : 0;
}
constexpr bool in_range(int height, int width) const {
return 0 <= x && x < width && 0 <= y && y < height;
}
bool in_range() const {
return in_range(H, W);
}
int to_i() const {
return x + y * W;
}
constexpr pair<int, int> to_pair() const {
return {x, y};
}
int dist(const Point& p) const {
return std::abs(x - p.x) + std::abs(y - p.y);
}
int dist_square(const Point& p) const {
return (x - p.x) * (x - p.x) + (y - p.y) * (y - p.y);
}
Point abs(const Point& p) const {
return {std::abs(x - p.x), std::abs(y - p.y)};
}
Point abs() const {
return {std::abs(x), std::abs(y)};
}
Point& swap() {
std::swap(x, y);
return *this;
}
template <class It> vector<Point> enum_adjanect(It first, It last) const {
vector<Point> res;
for (; first != last; ++first) {
res.push_back(operator+(*first));
}
return res;
}
template <class It> vector<Point> enum_adj_in_range(It first, It last) const {
vector<Point> res;
for (; first != last; ++first) {
auto p = operator+(*first);
if (p.in_range()) res.push_back(p);
}
return res;
}
vector<Point> adjacent4() const {
return enum_adjanect(d.begin(), d.begin() + 4);
}
vector<Point> adjacent8() const {
return enum_adjanect(d.begin(), d.end());
}
vector<Point> adj4_in_range() const {
return enum_adj_in_range(d.begin(), d.begin() + 4);
}
vector<Point> adj8_in_range() const {
return enum_adj_in_range(d.begin(), d.end());
}
constexpr Point left() const {
return {x - 1, y};
}
constexpr Point right() const {
return {x + 1, y};
}
constexpr Point up() const {
return {x, y - 1};
}
constexpr Point down() const {
return {x, y + 1};
}
constexpr Point moved(char c) const {
return Point(*this).move(c);
}
constexpr Point& move(char c) {
switch (c) {
case 'L':
case 'l':
case 'W':
case '>':
x--;
break;
case 'R':
case 'r':
case 'E':
case '<':
x++;
break;
case 'U':
case 'u':
case 'N':
case '^':
y--;
break;
case 'D':
case 'd':
case 'S':
case 'v':
y++;
break;
}
return *this;
}
constexpr Point rotate90() const {
return {y, -x};
}
constexpr Point rotate180() const {
return {-x, -y};
}
constexpr Point rotate270() const {
return {-y, x};
}
char to_direction_char(const string chars = "LRUD") const {
assert(4 <= chars.size() && chars.size() <= 5);
if (y == 0 && x < 0) {
return chars[0];
} else if (y == 0 && x > 0) {
return chars[1];
} else if (x == 0 && y < 0) {
return chars[2];
} else if (x == 0 && y > 0) {
return chars[3];
} else if (chars.size() == 5) {
return chars[4];
} else {
assert(false);
}
}
friend ostream& operator<<(ostream& os, const Point& p) {
return os << '(' << p.x << ", " << p.y << ')';
}
friend istream& operator>>(istream& is, Point& p) {
return is >> p.y >> p.x;
}
};
int Point::H, Point::W;
const vector<Point> Point::d{{0, 1}, {1, 0}, {0, -1}, {-1, 0},
{1, 1}, {-1, -1}, {1, -1}, {-1, 1}};
#line 3 "a.cpp"
struct Triangle {
bool left;
string abc;
Point point;
Triangle(bool l, string s, Point p) : left(l), abc(s), point(p) {}
Triangle move0() {
return Triangle(!left, string{abc[2], abc[0], abc[1]},
left ? point.left() : point.up());
}
Triangle move1() {
return Triangle(!left, string{abc[1], abc[2], abc[0]},
left ? point.down() : point.right());
}
Triangle move2() {
return Triangle(!left, abc, point);
}
pair<pair<int, int>, bool> to_p() {
return pair(point.to_pair(), left);
}
};
int main() {
Triangle t(true, "abc", Point::zero());
set<pair<pair<int, int>, bool>> flag;
flag.insert(t.to_p());
for (char c : STR) {
if (t.abc[0] == c) {
t = t.move0();
} else if (t.abc[1] == c) {
t = t.move1();
} else if (t.abc[2] == c) {
t = t.move2();
}
flag.insert(t.to_p());
}
out(flag.size());
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0