結果
問題 | No.1300 Sum of Inversions |
ユーザー | risujiroh |
提出日時 | 2020-11-27 21:31:54 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 323 ms / 2,000 ms |
コード長 | 5,513 bytes |
コンパイル時間 | 2,413 ms |
コンパイル使用メモリ | 217,296 KB |
実行使用メモリ | 7,936 KB |
最終ジャッジ日時 | 2024-07-23 22:15:12 |
合計ジャッジ時間 | 11,505 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 240 ms
7,040 KB |
testcase_04 | AC | 236 ms
6,784 KB |
testcase_05 | AC | 193 ms
6,144 KB |
testcase_06 | AC | 273 ms
7,296 KB |
testcase_07 | AC | 259 ms
7,040 KB |
testcase_08 | AC | 292 ms
7,552 KB |
testcase_09 | AC | 289 ms
7,424 KB |
testcase_10 | AC | 159 ms
6,944 KB |
testcase_11 | AC | 158 ms
6,940 KB |
testcase_12 | AC | 243 ms
6,944 KB |
testcase_13 | AC | 230 ms
6,940 KB |
testcase_14 | AC | 323 ms
7,808 KB |
testcase_15 | AC | 290 ms
7,552 KB |
testcase_16 | AC | 245 ms
6,940 KB |
testcase_17 | AC | 151 ms
6,944 KB |
testcase_18 | AC | 177 ms
6,940 KB |
testcase_19 | AC | 207 ms
6,944 KB |
testcase_20 | AC | 219 ms
6,940 KB |
testcase_21 | AC | 212 ms
6,940 KB |
testcase_22 | AC | 193 ms
6,940 KB |
testcase_23 | AC | 274 ms
7,296 KB |
testcase_24 | AC | 200 ms
6,940 KB |
testcase_25 | AC | 169 ms
6,944 KB |
testcase_26 | AC | 170 ms
6,940 KB |
testcase_27 | AC | 187 ms
6,944 KB |
testcase_28 | AC | 302 ms
7,552 KB |
testcase_29 | AC | 213 ms
6,944 KB |
testcase_30 | AC | 291 ms
7,424 KB |
testcase_31 | AC | 192 ms
6,940 KB |
testcase_32 | AC | 203 ms
6,940 KB |
testcase_33 | AC | 85 ms
7,936 KB |
testcase_34 | AC | 99 ms
7,936 KB |
testcase_35 | AC | 173 ms
7,936 KB |
testcase_36 | AC | 177 ms
7,936 KB |
ソースコード
#include <bits/stdc++.h> template <uint32_t Modulus> class ModularInt { using M = ModularInt; public: static_assert(int(Modulus) >= 1, "Modulus must be in the range [1, 2^31)"); static constexpr int modulus() { return Modulus; } static M raw(uint32_t v) { return *reinterpret_cast<M*>(&v); } ModularInt() : v_(0) {} ModularInt(int64_t v) : v_((v %= Modulus) < 0 ? v + Modulus : v) {} template <class T> explicit operator T() const { return v_; } M& operator++() { return v_ = ++v_ == Modulus ? 0 : v_, *this; } M& operator--() { return --(v_ ? v_ : v_ = Modulus), *this; } M operator+() const { return *this; } M operator-() const { return raw(v_ ? Modulus - v_ : 0); } M& operator*=(M o) { return v_ = uint64_t(v_) * o.v_ % Modulus, *this; } M& operator/=(M o) { auto [inv, gcd] = extgcd(o.v_, Modulus); assert(gcd == 1); return *this *= inv; } M& operator+=(M o) { return v_ = int(v_ += o.v_ - Modulus) < 0 ? v_ + Modulus : v_, *this; } M& operator-=(M o) { return v_ = int(v_ -= o.v_) < 0 ? v_ + Modulus : v_, *this; } friend M operator++(M& a, int) { return std::exchange(a, ++M(a)); } friend M operator--(M& a, int) { return std::exchange(a, --M(a)); } friend M operator*(M a, M b) { return a *= b; } friend M operator/(M a, M b) { return a /= b; } friend M operator+(M a, M b) { return a += b; } friend M operator-(M a, M b) { return a -= b; } friend std::istream& operator>>(std::istream& is, M& x) { int64_t v; return is >> v, x = v, is; } friend std::ostream& operator<<(std::ostream& os, M x) { return os << x.v_; } friend bool operator==(M a, M b) { return a.v_ == b.v_; } friend bool operator!=(M a, M b) { return a.v_ != b.v_; } private: static std::array<int, 2> extgcd(int a, int b) { std::array x{1, 0}; while (b) std::swap(x[0] -= a / b * x[1], x[1]), std::swap(a %= b, b); return {x[0], a}; } uint32_t v_; }; template <class T> class Fenwick { public: Fenwick() {} template <class Generator> Fenwick(int n, Generator gen) : tree(n) { for (int i = 0; i < n; ++i) tree[i] = gen(); for (int i = 0; i < n; ++i) if (int j = i | (i + 1); j < n) tree[j] += tree[i]; } int size() const { return std::size(tree); } void add(int i, const T& a) { assert(0 <= i), assert(i < size()); for (; i < size(); i |= i + 1) tree[i] += a; } T sum(int i) const { assert(0 <= i), assert(i <= size()); T res{}; for (; i; i &= i - 1) res += tree[i - 1]; return res; } T sum(int l, int r) const { assert(0 <= l), assert(l <= r), assert(r <= size()); return sum(r) - sum(l); } int kth(T k) const { static_assert(std::is_integral_v<T> and not std::is_same_v<T, bool>); assert(k >= 0); int i = 0; for (int w = 1 << std::__lg(size()); w; w >>= 1) if (i + w <= size() and tree[i + w - 1] <= k) k -= tree[(i += w) - 1]; return i; } private: std::vector<T> tree; }; #pragma region my_template struct Rep { struct I { int i; void operator++() { ++i; } int operator*() const { return i; } bool operator!=(I o) const { return i < *o; } }; const int l_, r_; Rep(int l, int r) : l_(l), r_(r) {} Rep(int n) : Rep(0, n) {} I begin() const { return {l_}; } I end() const { return {r_}; } }; struct Per { struct I { int i; void operator++() { --i; } int operator*() const { return i; } bool operator!=(I o) const { return i > *o; } }; const int l_, r_; Per(int l, int r) : l_(l), r_(r) {} Per(int n) : Per(0, n) {} I begin() const { return {r_ - 1}; } I end() const { return {l_ - 1}; } }; template <class F> struct Fix : private F { Fix(F f) : F(f) {} template <class... Args> decltype(auto) operator()(Args&&... args) const { return F::operator()(*this, std::forward<Args>(args)...); } }; template <class T = int> T scan() { T res; std::cin >> res; return res; } template <class T, class U = T> bool chmin(T& a, U&& b) { return b < a ? a = std::forward<U>(b), true : false; } template <class T, class U = T> bool chmax(T& a, U&& b) { return a < b ? a = std::forward<U>(b), true : false; } #ifndef LOCAL #define DUMP(...) void(0) template <int OnlineJudge, int Local> constexpr int OjLocal = OnlineJudge; #endif using namespace std; #define ALL(c) begin(c), end(c) #pragma endregion using Mint = ModularInt<998244353>; int main() { cin.tie(nullptr)->sync_with_stdio(false); cout << fixed << setprecision(20); int n = scan(); vector<int> a(n); generate(ALL(a), scan<>); auto v = a; sort(ALL(v)); v.erase(unique(ALL(v)), end(v)); auto vi = [&](int e) { return lower_bound(ALL(v), e) - begin(v); }; Mint ans; Fenwick<int> fi(n, [] { return 0; }); Fenwick<int> gi(n, [] { return 0; }); Fenwick<Mint> fm(n, [] { return 0; }); Fenwick<Mint> gm(n, [] { return 0; }); for (int i : Rep(n)) { gi.add(vi(a[i]), +1); gm.add(vi(a[i]), +a[i]); } for (int i : Rep(n)) { gi.add(vi(a[i]), -1); gm.add(vi(a[i]), -a[i]); ans += fm.sum(vi(a[i]) + 1, n) * gi.sum(vi(a[i])); ans += gm.sum(vi(a[i])) * fi.sum(vi(a[i]) + 1, n); ans += Mint(a[i]) * fi.sum(vi(a[i]) + 1, n) * gi.sum(vi(a[i])); fi.add(vi(a[i]), +1); fm.add(vi(a[i]), +a[i]); } cout << ans << '\n'; }